Menu

A Common Path to Unconsciousness

Analyses of brain activity patterns show that different drugs induce anesthesia via a common neural mechanism.

May 22, 2013
Dan Cossins

KetamineWIKIMEDIA, PSYCHONAUTDiverse anesthetic drugs, each with distinct molecular targets, disrupt communication between the front and rear of the brain, according to a new study published today (May 22) in Anesthesiology. The findings provide the strongest evidence yet that inhibition of frontal-parietal connectivity may be the common mechanism by which all anesthetics induce loss of consciousness.

“If the study’s findings are confirmed by subsequent work, the paper will achieve landmark status,” wrote Jamie Sleigh of the University of Auckland, who was not involved in the study, in an accompanying commentary. “[It] not only sheds light on the phenomenon of general anesthesia, but also how it is necessary for certain regions of the brain to communicate accurately with one another for consciousness to emerge.”

Researchers already knew that the commonly used anesthetics sevoflurane and propofol break down this particular route of brain communication. But it was not clear if ketamine, which acts on different molecular targets, works in the same way. To find out, a team led by George Mashour of the University of Michigan, Ann Arbor, analyzed electroencephalogram (EEG) recordings from patients who received ketamine and compared the results to EEG data from a previous study of patients who received propofol and sevoflurane.

They found that although the raw EEGs looked very different, all three drugs caused a very similar inhibition of the passage of information between the front and rear of the brain. Analysis of frontal-parietal connectivity could therefore provide a universal metric of depth of anesthesia, which may lead to better anesthesia monitors that work reliably across all kinds of drugs. (For more on monitoring anesthesia, see our recent story “Measuring Consciousness.”)

The research also suggests that intact frontal-parietal communication is a prerequisite for consciousness, adding weight to the theory that consciousness relies on the integration of information between cortical regions of the brain.

July 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

Overcoming the Efficiency Challenge in Clinical NGS
Overcoming the Efficiency Challenge in Clinical NGS
Download this white paper to see how an ECS lab serving a network of more than 10,000 healthcare providers integrated QIAGEN Clinical Insight (QCI) Interpret to significantly reduce manual variant curation efforts and increase workflow efficiency by 80%!
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas, Inc., an emerging diagnostic company, launched a portfolio of products that can improve the accuracy of current diagnostic test results by helping laboratory professionals detect and manage biotin interference in patient samples with VeraTest Biotin and VeraPrep Biotin.
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
Scientists presented more than 30 abstracts featuring Bio-Rad’s Droplet Digital PCR (ddPCR) technology at the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, May 31–June 4.
BellBrook Labs Receives NIH Grant for the Discovery of cGAS Inhibitors to Treat Autoimmune Diseases
BellBrook Labs Receives NIH Grant for the Discovery of cGAS Inhibitors to Treat Autoimmune Diseases
The National Institute Of Allergy And Infectious Disease recently awarded BellBrook Labs a $300,000 Small Business Innovative Research (SBIR) grant to develop novel inhibitors for the target cyclic GAMP Synthase (cGAS). The grant will be used to accelerate the discovery of new treatments for autoimmune diseases by targeting the cGAS-STING pathway.