Menu

Aedes aegypti Genome Assembled From Scratch

Scientists use a new technique to piece together the mosquito’s full genome.

Mar 26, 2017
Diana Kwon

Aedes aegyptiCDC

Aedes aegypti is the main vector of the Zika virus. Now, scientists at the Baylor College of Medicine in Houston, Texas, and their colleagues have successfully constructed this mosquito’s 1.2 billion-letter genome using a new assembly technique. The team’s results were published last week (March 23) in Science.

The newly assembled A. aegypti genome could help researchers pinpoint genes in the mosquito that allow the virus to spread, better equipping scientists to fight future Zika outbreaks.  

The new 3-D genome assembly method, which the researchers have called Hi-C, uses information about how the genome folds to determine the order of its sequence. “I’ve been waiting to work with something like this for probably 20 years,” David Severson, a mosquito researcher at the University of Notre Dame in Indiana who was not involved in the work, told Nature.

Hi-C could also help make screening human genomes faster and more affordable, the authors proposed. Although the price of DNA sequencing has fallen in recent years, assembling whole genomes still remains an expensive and laborious task. This is because sequenced genes come in short snippets that are only hundreds of base pairs long, while chromosomes can reach lengths of up to hundreds of millions of base pairs.

“Sequencing a patient’s genome from scratch using 3-D assembly is so inexpensive that it’s comparable in cost to an MRI,” coauthor Olga Dudchenko, a postdoctoral fellow at Baylor, said in a statement. “Generating a de novo genome for a sick patient has become realistic.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.