Menu

Altered Microbiome Contributes to Exaggerated Post-Diet Weight Regain in Mice

Obesity-associated microbiome composition can persist after weight loss, affecting the exchange of metabolites between a mouse and its resident bugs, researchers report.

Nov 24, 2016
Tracy Vence

Lose weight, gain it back. That’s the frustrating routine for many individuals who have experienced only short-term success with diets. To examine the microbial and metabolic factors underlying this weight loss-regain cycle, researchers at the Weizmann Institute of Science in Rehovot, Israel, ran a series of experiments using a mouse model of recurrent obesity. The composition of a mouse’s microbiome is predictive of post-diet weight regain, which is in part modulated by metabolites released by the bugs, the researchers found. Their results were published today (November 24) in Nature.

“This work adds some insight on how the microbiome acts as a buffer to changes in our diet,” study coauthor Eran Segal of the Weizmann Institute said during a press briefing this week (November 22).

In particular, the researchers found evidence to suggest that mice that were once obese tend to experience alterations in microbiome composition that persist during and after weight loss. They also linked the metabolic health of mice to levels of the dietary flavonoids apigenin and naringenin, among other metabolites exchanged between the host and microbiome.

See “How Diet Influences Host-Microbiome Communication in Mice

There is hope, however. Segal and colleagues also reported that microbiome- and metabolite-mediating therapies—such as antibiotic treatment, fecal transplant, or postbiotic supplementation—can ameliorate the rate of weight regain in mice predisposed to recurrent obesity.

“It’s a combination of the microbiome and the diet” that contribute to exaggerated post-diet weight regain in mice, said Segal. “More and more, we and others are beginning to understand the interaction between the microbiome and the host, and how that interaction occurs. We, more and more, understand that this is going on—to a very large extent—at the level of molecules that are exchanged between the host and the microbiome.”

“The next obvious step is to study this in populations of humans that suffer similar relapsing obesity phenotypes,” coauthor Eran Elinav of the Weizmann Institute added during the press briefing, noting that such investigations are ongoing.

THUMBNAIL IMAGE: WIKIMEDIA, ORNL

June 2019

Living with Bacteria

Can pathogens be converted to commensals?

Marketplace

Sponsored Product Updates

Gyros Protein Technologies introduces Gyrolab E. coli HCP Kit for automated impurity analysis of biotherapeutics
Gyros Protein Technologies introduces Gyrolab E. coli HCP Kit for automated impurity analysis of biotherapeutics
Ready-to-use immunoassay kit increases analytical output and productivity in bioprocess workflows. Kit developed as part of licensing and supply agreement with Cygnus Technologies
IDT launches ultra-high performance CRISPR Cas12a enzyme
IDT launches ultra-high performance CRISPR Cas12a enzyme
IDT’s new CRISPR Cas12a (Cpf1) Ultra enzyme can target new sites within the genome and with greater efficiency
Implen Launches New NanoPhotometer N120: The High Throughput Champion!
Implen Launches New NanoPhotometer N120: The High Throughput Champion!
Implen GmbH is excited to announce the release of the NanoPhotometer® N120, an absorbance based UV/VIS Multi Channel Spectrophotometer.
StemExpress Announces Release of New Frozen Leukopak® to Advance Research
StemExpress Announces Release of New Frozen Leukopak® to Advance Research
To continue to provide new products and services to further advance medical research around the world, today, StemExpress announced the release of their Frozen Leukopak®.