Menu

Amyloid Designed to Inactivate Cancer-Related Protein

Researchers build a peptide that causes a receptor to form toxic, amyloid-like clumps in cells.

Nov 14, 2016
Kerry Grens

VEGFR2 bound by axitinibWIKIMEDIA, FUSE809Scientists have designed a peptide that homes in on an amyloid-vulnerable region of a protein involved in cancer, causing the molecule to aggregate and deactivate. The resulting protein clumps were toxic to cells—but only those that rely on the protein’s activity. The team published its findings in Science last week (November 11).

“Although we don’t yet know if functional amyloids could be used in humans for therapeutic applications, the potential for novel drugs is huge,” study coauthor Joost Schymkowitz of the University of Leuven, Belgium, said in a press release. “Our team will now spend the coming years trying to turn this into direct benefits for patients.”

With its designer peptide, called vascin, Schymkowitz’s group targeted vascular endothelial growth factor receptor (VEGFR2)—specifically, an “amyloidogenic sequence” within the protein. Although VEGFR2 doesn’t normally form amyloids, the designer peptide’s interaction with this vulnerable region caused VEGFR2 to snarl.

“We found vascin only to be toxic to cells that are dependent on VEGFR2 function, suggesting that toxicity is due to loss of VEGFR2 function and not to vascin aggregation or vascin-induced VEGFR2 aggregation,” Schymkowitz and his colleagues wrote in their report.

Speaking with STAT News, Schymkowitz said amyloid-inducing peptides could be deployed for combatting various diseases. “Because these principles apply to virtually any protein, our approach may not only be useful in developing future cancer therapies, but also in treating drug-resistant infections.” 

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.