Menu

Ancient Microfossils May be Earliest Signs of Life

Researchers find what appear to be 3.77 billion-year-old hints of microbial life hidden in Canadian rocks, but some scientists are not convinced.

Mar 2, 2017
Diana Kwon

Iron oxide-containing tubes from the Nuvvuagittuq belt hydrothermal vent deposits. Matthew Dodd

Scientists may have uncovered microfossils containing evidence of microbes that lived at least 3.77 billion ago, according to a study published yesterday (March 2) in Nature.

“If indeed their analyses and interpretations are correct, then life arose rapidly on Earth, soon after the planet itself began to stabilize,” astrobiologist Kevin Hand of NASA’s Jet Propulsion Laboratory who was not involved in the study, told the National Geographic. “As the froth of geology began to cool, biology established its role as a planetary process.”

University College London researchers analyzed iron-rich rocks from the Nuvvuagittuq belt, an area in northern Canada that, according to geologists, is between 3.77 and 4.28 billion years old. They sliced the rocks to pieces thin enough to study under a microscope, and found iron oxide-containing filaments and tubes the width of a human hair—five to ten microns in diameter—that are similar to those found in modern-day microbes living in deep-sea hydrothermal vents. In addition, the team found minerals such as carbonate and phosphorus-containing apatite, which are commonly produced as organisms decay in sediments.

“The fact we found these lifeforms in hydrothermal vent deposits from so early in Earth’s history supports the long-standing theory that life arose in these types of environments,” study co-author Matthew Dodd, a doctoral student at University College London wrote in The Conversation. “The environment that we found these ancient microfossils in, and their similarity to younger fossilised and modern bacteria, suggests that their iron-based metabolisms were among the first ways life sustained itself on Earth.”

However, several outside experts are sceptical of the authors’ claims. “I am frankly dubious,” Frances Westall at the Centre for Molecular Biophysics in Orléans, France, told New Scientist. “All kinds of reactions take place at [high] pressures and temperatures.” As such, she added, they may just be a by-product of those reactions rather than a sign of early life.

Kurt Konhauser, a geomicrobiologist at the University of Alberta, who was not involved in the study, told Science that while the tubes and filaments are similar to those found in modern day bacteria, “…of course that does not mean the [3.77-] billion-year-old structures are cells.” In addition, he pointed out that “if the tubes were formed by iron-oxidizing bacteria, they would need oxygen, in short supply at this early moment in Earth’s history.”

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.