Menu

Antimalarial Drug Mechanism Explained

Artemisinin targets multiple parasite proteins after being activated by the iron in heme cofactors.

Dec 29, 2015
Karen Zusi

PIXABAY, GERALT

A team of researchers from Chinese and Singaporean institutions has identified 124 proteins targeted by the malaria-fighting compound artemisinin, as well as the source of the iron required for the drug’s activation. The group’s results were published last week (December 22) in Nature Communications.

The discovery of artemisinin won Chinese scientist Youyou Tu a Nobel Prize in Physiology or Medicine this year, but questions have still surrounded artemisinin’s exact mechanism of action. In the current study, researchers labeled and tracked artemisinin to identify its targets in two strains of the malaria parasite Plasmodium falciparum.

The research team discovered that artemisinin is activated by the iron contained in heme, a component of hemoglobin, rather than by free-floating iron. The source of heme is both the parasite’s own heme biosynthesis and that released when the parasite digests the hemoglobin of its host. The researchers also identified 124 proteins in P. falciparum that are targeted by artemisinin. “Many of the identified targets are involved in essential biological processes,” the authors wrote in their report.

“Artemisinin kills by jamming up a large variety of cellular processes rather than a single pathway,” Leila Ross, a postdoc studying malaria drug resistance at Columbia University who was not involved in the study, told Chemical & Engineering News (C&EN). The idea that artemisinin binds to multiple parasite proteins was suggested in 1994 by Steven Meshnick, a researcher who was then at the University of Michigan. “This elegant paper makes a convincing argument for heme-activated promiscuous protein modification,” Meshnick, now at the University of North Carolina, Chapel Hill, told C&EN.

“With artemisinin resistance in malaria parasites becoming an emerging concern, particularly in Southeast Asia, our study could potentially contribute to the design of better drugs and treatment strategies against malaria,” study coauthor Kevin Tan from the National University of Singapore said in a press release.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing