Menu

Bacterial Protein Acts as Prion in Yeast and E. coli

Clostridium botulinum produces a transcription factor that can aggregate and self-propagate a prion-like form, leading to genome-wide changes in gene expression in E. coli, according to a study.

Jan 17, 2017
Jef Akst

Computer-generated image of anaerobic, spore-forming, Clostridium bacteriaCDC, JAMES ARCHERResearchers at Harvard Medical School used software to run through roughly 60,000 bacterial genomes in search of proteins that, in yeast, would be predicted to behave as prions—that is, become misfolded in a way that passes on the errant structure to like proteins. In doing so, they identified a version of the global regulator Rho encoded in the genome of Clostridium botulinum, the causative agent of botulism. When they injected Cb­-Rho into E. coli to examine the protein’s function, they found that the protein misfolded in a prion-like manner, rendering it nonfunctional and allowing genes normally suppressed by Rho to be expressed.

The study, published last week (January 13) in Science, is the first to identify a prion-like protein in bacteria, suggesting that the emergence of prions predates the evolutionary split between eukaryotes and bacteria,” the authors, from Harvard Medical School, wrote.

Bacterial proteins capable of acting like prions could help the microbes to adapt to environmental changes. One of the genes liberated from Rho suppression, for example, allowed E. coli to better adapt to ethanol exposure. Because prions pass on their misfolded shape to like proteins, they may allow bacteria evolve without genomic changes. “Bacteria might need quick responses to their environment, such as dealing with antibiotics,” Peter Chien, a bacterial biochemist at the University of Massachusetts Amherst, who was not involved in the research, told Nature.

For now, the researchers have only studied Cb-Rho in E. coli and yeast. (It could substitute for a known yeast prion, which are not all disease-causing, further pointing to the protein’s prion-like behavior.) But it remains to be seen how Cb-Rho acts in its natural host, C. botulinum, which will prove more challenging to study.

Nevertheless, the discovery of a prion-like protein in bacteria suggests that this molecular behavior is more common than researchers realized, coauthor Ann Hochschild, a bacterial geneticist at Harvard Medical School, told Nature. “Prions are likely to be much more widespread in nature than previously assumed. We believe other prion-forming proteins will be uncovered in bacteria.”

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Corp., an innovative privately held Canadian biotechnology company focusing primarily on nucleic acid and protein stabilization and purification, as well as providing high quality services to the scientific community, today announced that it has become Propel-Certified through Illumina as a Next Generation Sequencing (NGS) service provider.

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.