Menu

Bioengineers Use Yeast to Manufacture Drugs

The yeast’s output of noscapine, a cough suppressant naturally made by poppies, is 18,000-fold higher than previous attempts.

Apr 3, 2018
Jim Daley

KARL GRUBER, WIKIMEDIA

In a study published yesterday (April 2) in PNAS, researchers describe how they genetically engineered a strain of brewer’s yeast, Saccharomyces cerevisiae, to produce noscapine, a nonnarcotic cough suppressant produced naturally by opium poppies. The scientists included an array of genes from various organisms to build the biosynthetic pathway in the yeast.

“This is a technology that’s going to change the way we manufacture essential medicines,” says coauthor Christina Smolke, a synthetic biologist at Stanford University, in a statement. “Traditionally, we’ve gotten our medicines from the natural world, mainly from plants. But the plants’ molecular assembly lines have evolved to optimize the plants’ survival, not to churn out buckets of one substance we humans want to get our hands on.”

See “Yeast-Based Opioid Production Completed

Smolke and her colleagues inserted 25 plant, bacteria, and mammalian genes into the yeast, as well as six yeast genes, to create the noscapine-producing pathway. They used CRISPR to edit genes so that the enzymes they coded for would work effectively in the exotic, acidic environment of yeast cells.

The new configuration improved the yeast’s output of the drug by a factor of 18,000 over previous attempts that used different gene combinations. As a result, the scientists can produce substantial amounts of noscapine in just a few days. This improvement in output means that the technique could eventually be optimized for commercial manufacturing, although that requires an additional 100-fold increase in production. Smolke says much of this can be achieved by simply scaling up laboratory hardware.

Noscapine has traditionally been widely used as a cough suppressant, but in 1998 researchers at Emory University discovered its potential as an anticancer drug. Since then, it has been shown to reduce and possibly prevent metastasis of breast and prostate tumors in mice, but the process of harvesting the drug from opium poppies is laborious (via TIME).

“We’re no longer limited to what nature can make,” Smolke says in the statement. “We’re moving to an age where we can borrow nature’s medicine-manufacturing processes and, using genetic engineering, build miniature living factories that make what we want.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing