Menu

Biological Programming

A new tool makes programming living cells like writing computer software.

Apr 1, 2016
Tanya Lewis

FLICKR, CAROLINE DAVIS2010Soon, programming living cells may be as straightforward as programming a computer. Researchers at MIT have developed a tool that makes it possible to design DNA circuits for living cells, they reported today (April 1) in Science.

“This is the first example where we’ve literally created a programming language for cells,” study coauthor Chris Voigt of MIT told Nature.

The new tool, called “Cello,” enables users to automate the design of cellular circuits—a core feature of synthetic biology. It’s based on an existing programming language, “Verilog,” which is used to design electronic circuits on a computer chip. The user simply inputs a design, and the program converts it into a DNA sequence that executes a specific function, like producing a drug.

“This paper solves the problem of the automated design, construction and testing of logic circuits in living cells,” bioengineer Herbert Sauro at the University of Washington in Seattle, who was not involved in the study, told Nature.

Using Cello, Voigt and his colleagues designed 60 DNA circuits, 45 of which worked when first tested. Work that took a scientist three years to complete in 2012 would take about a week with the new system, Voigt told Nature.

Synthetic biologist Drew Endy of Stanford University, who was also not involved in the research, predicted that biological programmers will eventually become more common than computer programmers. “Not everyone has a computer or even a cellphone,” he told New Scientist, “but everyone has biology.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.