Bipedal Beginnings

Re-examination of a thigh bone from one of the earliest putative hominins could impact scientists’ understanding of the origins of human bipedalism, a study suggests.

Tracy Vence
Dec 4, 2013

Orrorin tugenensis fossilsWIKIMEDIA, LUCIUSUsing geographic morphometrics to reassess the femur bone of Orrorin tugenensis, one of the earliest putative hominins, a team led by investigators at Stony Brook University Medical Center in New York has found evidence to suggest that both ancient hominin and modern great ape thigh bones evolved differently from the primitive morphology observed in some fossil apes. The team said its work, published this week (December 3) in Nature Communications, could impact scientists’ understanding of how bipedalism came to be the dominant form of locomotion in ancient humans.

In their paper, the researchers suggested that some Miocene-era apes “represent a more appropriate model for the ancestral morphology from which hominins evolved than do [living] great apes.”

“Living apes—chimpanzees, gorillas, and orangutans—have long and independent evolutionary histories of their own, and their modern anatomies should not be assumed to represent the ancestral condition for...