Menu

Blood Protein Rejuvenates Aging Heart

A molecule found only in the blood of young mice dramatically reverses thickening and stiffening of the heart muscle in old mice.

May 10, 2013
Dan Cossins

WIKIMEDIA, RAMAUsing proteomics in combination with a 19th-century surgical technique in which the circulatory systems of two mice are joined together, researchers have demonstrated that a protein found only in the blood of young mice reverses the effects of aging in old mice, according to a study published this week (May 9) in Cell.

“I think it’s a stunning result that, for the first time, points at a secreted protein that maintains the heart in a young state,” cardiologist Deepak Srivastava of the Gladstone Institute of Cardiovascular Disease in San Francisco, who was not involved with the research, told Nature. “That’s pretty remarkable.”

Heart failure in elderly people is often caused by cardiac hypertrophy, a thickening of the heart muscle that results in the shrinking of the chambers within. To understand what causes this age-related thickening, and to search for a way to reverse it, stem cell biologists from Harvard University tested the effect of circulating factors in young blood on aging hearts.

To do so, they turned to a centuries-old technique called heterochronic parabiosis, in which two live animals of different ages are surgically joined together to share blood circulation. Having surgically linked the blood supply of five 2-year-old mice with five 2-month-old mice, the researchers found that, after 4 weeks of exposure to young blood, the older mice’s heart muscles had dramatically thinned and softened.

Using protein-analysis techniques to narrow down the list of what could be responsible for this reversal, the researchers identified a molecule called growth differentiation factor 11 (GDF-11), a circulating factor in young mice that declines with age. The team then showed old mice treated with GDF-11 for 30 days experienced that same heart rejuvenation as those in the parabiosis experiment, demonstrating that the molecule—which also appears in human blood—may hold promise for treating cardiac aging.

“It’s conceivable that this is just an interesting mouse story,” Richard Lee of the Harvard Stem Cell Institute told ScienceNOW, “but we're hoping to get data that might tell us that it pertains to humans.”

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN Ltd are pleased to announce the commercial licensing of CRISPR-Cas9 gene-editing technology from Broad Institute of MIT and Harvard in the USA, to develop human cell disease models to support preclinical metabolic disease therapeutic programmes.

Thermo Fisher Scientific: Freezers for Biological Samples

Thermo Fisher Scientific: Freezers for Biological Samples

Fluctuations in temperature can reduce the efficacy, decompose, or shorten the shelf life of biologics. Therefore, it is important to store biologics at the right temperature using standardized protocols.