Menu

Cell Reprogramming Successes

Two studies demonstrate the first direct, chemical reprogramming of mouse and human skin cells into heart muscle and neural cells.

May 2, 2016
Catherine Offord

Neurons created from neural stem cells derived using a new direct cell reprogramming methodMINGLIANG ZHANG, PHD, GLADSTONE INSTITUTES (VIA EUREKALERT)Researchers have developed a method to directly reprogram cells using a combination of nine chemical compounds. The procedure bypasses the induced pluripotency step that has been used in previous chemical methods of cell reprogramming, as well as the gene introduction step that has been a focus of other attempts to reprogram cells directly. Led by stem cell biologist Sheng Ding at the Gladstone Institute of Cardiovascular Disease in San Francisco, the researchers demonstrated the procedure’s potential by reprogramming human skin cells into functional heart muscle and mouse skin cells into neural stem cells. The results were published last week (April 28) in Science and Cell Stem Cell, respectively.

“This method brings us closer to being able to generate new cells at the site of injury in patients,” Ding, who is also a professor at the University of California, San Francisco, said in a statement. “Our hope is to one day treat diseases like heart failure or Parkinson's disease with drugs that help the heart and brain regenerate damaged areas from their own existing tissue cells.”

In the Science study, Ding’s team used trial and error to find a combination of chemicals that could induce human skin cells to turn into multipotent stem cells, and then into cardiomyocytes. Honing the technique, the researchers were able to produce a population of cells that molecularly resembled heart muscle and developed into apparently healthy heart muscle when transplanted in mouse hearts. “The ultimate goal in treating heart failure is a robust, reliable way for the heart to create new muscle cells,” study coauthor Deepak Srivastava of the Gladstone Institute of Cardiovascular Disease said in the statement. “Reprogramming a patient’s own cells could provide the safest and most efficient way to regenerate dying or diseased heart muscle.”

Separately, Ding and colleagues developed an equally direct, nine-chemical method for reprogramming mouse skin cells into neural stem cells that have the potential to form neurons. These results appeared in Cell Stem Cell. “In the future, we could even imagine treating patients with a drug cocktail that acts on the brain or spinal cord, rejuvenating cells in the brain in real time,” study coauthor Yadong Huang of the Gladstone Institute of Neurological Disease said in the statement.

Stem cell researcher Paul Knoepfler of the University of California, Davis, who was not involved in the work, noted on his blog that the studies did not delve into the frequencies of mutations or the potential for tumorigenesis in the chemically reprogrammed cells. “Whole-genome sequencing data will be needed,” he wrote. But he also observed that the findings are “a big step in the right direction” to make direct reprogramming a reality, calling the reports “a very big deal.”

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.