Menu

Cellular Garbage Disposal Illuminated

A Harvard team shows how cells label and recognize proteins for degradation.

Apr 13, 2015
Bob Grant

UbiquitinWIKIMEDIA, ROGERDODDCells dispose of worn-out proteins to maintain normal function. One type of protein degradation relies upon such proteins being tagged with peptides called ubiquitins so that the cell can recognize them as trash. Harvard researcher Marc Kirschner and his colleagues have used single-molecule fluorescence methods to show how an enzyme adds ubiquitins to proteins, and how those proteins are recognized and recycled in the cell’s proteosome. They reported their findings in a pair of Science papers published last week (April 10).

Aaron Ciechanover, Avram Hershko, and Irwin Rose, the researchers who discovered the process in the 1980s, shared the 2004 Nobel Prize in Chemistry for their work on ubiquitin-mediated protein degradation. But the molecular particulars of the process remained murky until last week. Kirschner and his colleagues found that an enzyme called APC/C adds ubiquitins to proteins headed for the rubbish heap in an iterative fashion, through processive affinity amplification. They also found that the proteosome singles out ubiquitin-tagged proteins for degradation by recognizing distributed arrays of short ubiquitins chains, with the configuration of those chains determining how the protein passes through specific channels in the proteosome. Previous models posited that proteins tagged with tetraubiquitins were the only ones slated for degradation.

“Both studies substantially enrich our knowledge of ubiquitination and degradation, reveal new properties of APC/C and the proteasome, and challenge established concepts about the ubiquitin-proteasome system,” wrote David Komander, a researcher at the Medical Research Council Laboratory of Molecular Biology in the U.K. in a commentary in Science.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.