Menu

Cellular Pruning Follows Adult Neurogenesis

Newly formed neurons in the adult mouse brain oversprout and get cut back.

May 2, 2016
Kerry Grens

Newly born neurons in the dentate gyrus of the mouse brain labeled with green fluorescent proteinSALK INSTITUTESimilar to the neural growth and subsequent trimming that happens during development, adult-born brain cells in mice sprout extra branches that are later trimmed back. Rusty Gage of the Salk Institute for Biological Studies and colleagues watched as cells in the dentate gyrus of adult mice sent out dendritic processes, only to have them pruned back days later. The team’s results were published today (May 2) in Nature Neuroscience.

“What was really surprising was that the cells that initially grew faster and became bigger were pruned back so that, in the end, they resembled all the other cells,” study coauthor Tiago Gonçalves of the Salk Institute said in a press release.

To track the baby neurons, the researchers labeled the cells with green fluorescent protein (GFP) and implanted a glass viewing platform in the brain. They checked in on the labeled cells over the course of several weeks. Three weeks after GFP labeling, the cells’ branching peaked, then dropped over the following week to reach a stable state.

Although the cells of animals who were exposed to enriched environments produced more dendritic branches initially, they also experienced more pruning to end up looking similar to cells from mice kept in regular cages. “Our findings therefore suggest that dendritic pruning in developing DGCs [dentate granule cells] occurs in a homeostatic fashion, acting to counter excessive branching and contributing to defining a similar branch structure for all DGCs,” the authors wrote in their report.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.