Menu

CRISPR-Powered Malaria Mosquito Gene Drive

Using the precision gene-editing tool, researchers demonstrate an ability to create large populations of malaria parasite–resistant mosquitoes.

Nov 24, 2015
Tracy Vence

A. stephensiWIKIMEDIA, CDCUsing CRISPR, investigators at the Universities of California (UC) in San Diego and Irvine have engineered transgenic Anopheles stephensi mosquitoes carrying an anti-malaria parasite effector gene “capable of introgressing the genes throughout wild vector populations,” they wrote in a PNAS paper published this week (November 23). The resulting gene-drive system could help wipe out the malaria pathogen (Plasmodium falciparum) within a targeted population of A. stephensi vectors, Anthony James of UC Irvine and his colleagues wrote.

“We know the gene works,” James said in a statement. “The mosquitoes we created are not the final brand, but we know this technology allows us to efficiently create large populations.”

As Nature noted, this study is not the first to report engineered Anopheles that stifle the malaria parasite but, until now, “researchers lacked a way to ensure that the resistance genes would spread rapidly through a wild population.” CRISPR/Cas9 gene-editing enabled this feat. “Males and females derived from transgenic females . . . produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene,” James and his colleagues wrote in their paper. (See “Reining in Gene Drives,” The Scientist, November 2015.)

“This work suggests that we’re a hop, skip, and jump away from actual gene-drive candidates for eventual release,” Kevin Esvelt of the Wyss Institute who was not involved in the work told Nature. “This is a major advance because it shows that gene drives will likely be effective in mosquitoes,” Esvelt told MIT Technology Review. “Technology is no longer the limitation.”

In the UC Irvine statement, study coauthor Ethan Bier of UC San Diego added that “the ability of this system to carry large genetic payloads should have broad applications to the future use of related CRISPR-based ‘active genetic’ systems.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing