Menu

CRISPR to Debut in Clinical Trials

The first industry-sponsored CRISPR therapy is slated to be tested in humans in 2018.

Dec 14, 2017
Diana Kwon

ISTOCK, BUBAONELast Thursday (December 7), CRISPR Therapeutics submitted an application to European regulatory authorities seeking permission to begin clinical trials for CTX001, an investigational CRISPR treatment for patients with sickle cell disease and β thalassemia.

CRISPR Therapeutics, the company cofounded by Emmanuel Charpentier—one of the developers of CRISPR gene editing technology—plans to start a Europe-based Phase 1/2 trial for patients with β thalassemia in 2018. “I think it’s a momentous occasion for us, but also for the field in general,” Samarth Kulkarni, CEO of the company, tells Wired. “Just three years ago we were talking about CRISPR-based treatments as sci-fi fantasy, but here we are.”

The firm also plans to apply for US Food and Drug Administration approval to use the treatment for sickle cell disease early next year.

Patients with sickle cell disease and β thalassemia possess mutations in a gene that produces a subunit of hemoglobin, an oxygen-transporting protein in the blood. CTX001 works by cleaving BCL11A, a gene that represses the production of fetal hemoglobin, which is only produced early in life.

According to preclinical data presented by the company last Sunday (December 10) at the American Society of Hematology (ASH) meeting in Atlanta, cell- and animal-based experiments show that CTX001 has high editing efficiency and no detectable off-target effects.

“It is important that they do this very carefully,” Stuart Orkin, a hematologist-oncologist at Boston Children’s Hospital, tells Chemical & Engineering News. “Because if there is a mistake or bad effect [from CRISPR], it will have repercussions beyond a single patient.”

Other companies are working on their own versions of this therapy. Intellia Therapeutics also announced promising data for its BCL11A-based CRISPR treatment at ASH earlier this week, and Sangamo Therapeutics is targeting the gene with zinc finger nucleases, an older gene editing technique.

Clarification (December 14): The subheading of this article was changed to clarify that the therapy is entering clinical trials, rather than entering the market.

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Improved Accuracy in Multiplex Assays

Improved Accuracy in Multiplex Assays

Interference by endogenous antibodies in immunoassays is a well-documented phenomenon. Download this poster to learn about the profound effects that this can have on the data and how development expertise and assay design can eliminate or reduce the effects of endogenous antibodies.

Complete Pathology Solutions: Make Every Minute Count

Complete Pathology Solutions: Make Every Minute Count

From sample collection and handling, to fixation and processing, tissue staining, and covering all your IHC and water purification needs—you can have confidence in the quality of your results with MilliporeSigma's one-stop pathology solution.

Preparing Cell Or Tissue Lysates For ELISA Kits

Preparing Cell Or Tissue Lysates For ELISA Kits

RayBiotech manufactures over 2,000 high fully validated, GMP-compliant ELISA kits. In this blog post we explain how to prepare cell or tissue lysates for ELISA Kits.

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Corp., an innovative privately held Canadian biotechnology company focusing primarily on nucleic acid and protein stabilization and purification, as well as providing high quality services to the scientific community, today announced that it has become Propel-Certified through Illumina as a Next Generation Sequencing (NGS) service provider.