Menu

Early Animals Oxygenated Oceans

Researchers suggest that ancient animal species helped oxygenate Earth’s oceans, paving the way for complex life forms to evolve.

Mar 11, 2014
Bob Grant

Microscopic structures called spicules make up the bodies of sponges, filter feeders that could have helped oxygenate the world's oceans.WIKIMEDIA, NOAAAnimal species may have played a bigger role in the oxygenation of the deep ocean—which was necessary for life to really take off and get evolution rolling on Earth—than  previously realized, according to researchers in the United Kingdom. Publishing in Nature Geoscience, the University of Exeter’s Timothy Lenton, who led a team of scientists from the University of Leeds, the University of Cambridge, and University College London, proposed that early eukaryotes, increasing in size as evolution proceeded, sank quickly and therefore reduced oxygen consumption in surface waters. In addition, filter feeding animal species, such as sponges, helped spread oxygen from the ocean’s surface to its depths by filtering out organic matter thus helping to reduce oxygen demand in surrounding waters. “There had been enough oxygen in ocean surface waters for over 1.5 billion years before the first animals evolved, but the dark depths of the ocean remained devoid of oxygen,” Lenton said in a statement. “We argue that the evolution of the first animals could have played a key role in the widespread oxygenation of the deep oceans. This in turn may have facilitated the evolution of more complex, mobile animals.”

During the Neoproterozoic Era (from 1 billion to 542 million years ago), more oxygenated ocean depths also could have slowed the release of phosphorus from sediments, lowering productivity and therefore ocean-wide oxygen demand, the team suggested. This would have set up a positive feedback loop further oxygenating the deep ocean. Well-oxygenated depths provided just the right stew for life to burst forth and evolve more complex, more mobile animal species. This model runs contrary to the traditional view that it was increases in atmospheric oxygen that preceded the evolution of complex animal forms.

“The effects we predict suggest that the first animals, far from being a passive response to rising atmospheric oxygen, were the active agents that oxygenated the ocean around 600 million years ago,” Lenton said in a statement. “They created a world in which more complex animals could evolve, including our very distant ancestors.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.