Menu

Early Animals Oxygenated Oceans

Researchers suggest that ancient animal species helped oxygenate Earth’s oceans, paving the way for complex life forms to evolve.

Mar 11, 2014
Bob Grant

Microscopic structures called spicules make up the bodies of sponges, filter feeders that could have helped oxygenate the world's oceans.WIKIMEDIA, NOAAAnimal species may have played a bigger role in the oxygenation of the deep ocean—which was necessary for life to really take off and get evolution rolling on Earth—than  previously realized, according to researchers in the United Kingdom. Publishing in Nature Geoscience, the University of Exeter’s Timothy Lenton, who led a team of scientists from the University of Leeds, the University of Cambridge, and University College London, proposed that early eukaryotes, increasing in size as evolution proceeded, sank quickly and therefore reduced oxygen consumption in surface waters. In addition, filter feeding animal species, such as sponges, helped spread oxygen from the ocean’s surface to its depths by filtering out organic matter thus helping to reduce oxygen demand in surrounding waters. “There had been enough oxygen in ocean surface waters for over 1.5 billion years before the first animals evolved, but the dark depths of the ocean remained devoid of oxygen,” Lenton said in a statement. “We argue that the evolution of the first animals could have played a key role in the widespread oxygenation of the deep oceans. This in turn may have facilitated the evolution of more complex, mobile animals.”

During the Neoproterozoic Era (from 1 billion to 542 million years ago), more oxygenated ocean depths also could have slowed the release of phosphorus from sediments, lowering productivity and therefore ocean-wide oxygen demand, the team suggested. This would have set up a positive feedback loop further oxygenating the deep ocean. Well-oxygenated depths provided just the right stew for life to burst forth and evolve more complex, more mobile animal species. This model runs contrary to the traditional view that it was increases in atmospheric oxygen that preceded the evolution of complex animal forms.

“The effects we predict suggest that the first animals, far from being a passive response to rising atmospheric oxygen, were the active agents that oxygenated the ocean around 600 million years ago,” Lenton said in a statement. “They created a world in which more complex animals could evolve, including our very distant ancestors.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!