Menu

Early Code

New research points to key properties of transfer RNA molecules and amino acids that may have supported the origin of life on Earth.

Jun 3, 2015
Jef Akst

FLICKR, NET_EFEKTOn early Earth, around 3.5 billion to 4 billion years ago, some combination of basic molecular building blocks arose from a primordial soup of chemicals and then slowly evolved into the protein, lipid, and nucleic acid polymers that exist in all modern organisms. Which type of molecule came first has long been a matter of debate in the scientific community. Now, in two papers published this week (June 1) in PNAS, University of North Carolina scientists Richard Wolfenden, Charles Carter, and their colleagues have provided evidence to support the idea that proteins and RNA may have arisen concurrently.

“Our work shows that the close linkage between the physical properties of amino acids, the genetic code, and protein folding was likely essential from the beginning, long before large, sophisticated molecules arrived on the scene,” Carter said in a statement. “This close interaction was likely the key factor in the evolution from building blocks to organisms.”

In the first study, Wolfenden, Carter, and their colleagues demonstrated how the hydrophobicity and size of each of the 20 amino acids influence protein folding. They also showed that, while these properties change with temperature, they do “not disrupt the basic relationships between genetic coding and protein folding,” Wolfenden said in the statement. This is important, the researchers noted, given that life originated on a very hot early Earth.

Turning their attention to the transfer RNA (tRNA) step in the DNA-to-protein process, Carter and Wolfenden found that one side of tRNA molecule sorts amino acids according to size, while the other side codes for polarity, further demonstrating the importance of the physical properties of these molecules in the genetic-protein code.

“Dr. Wolfenden established physical properties of the 20 amino acids, and we have found a link between those properties and the genetic code,” Carter said. “That link suggests to us that there was a second, earlier code that made possible the peptide-RNA interactions necessary to launch a selection process that we can envision creating the first life on Earth.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery Group plc, a global leader in gene editing and gene modulation technologies, today announced the launch of its Myeloid DNA Reference Standard. The first-to-market large cell-line derived myeloid cancer reference standard designed enables faster, more reliable and more cost-effective assay validation, to support the market in bringing routine testing into practice.

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!