Engineering cellular synchrony

Scientists have engineered bacteria that can communicate with each other in a synchronized manner, lighting up in waves of fluorescent green, according to report in this week's Nature. The advance paves the way for developing environmental sensors and drug delivery systems that can time the release of medicines in periodic bursts. A supernova burst in a colony of coupledgenetic clocks after critical cell densityImage: Tal Danino, Octavio Mondragon-Palamino, Lev Tsimring"I think [the study] rep

Edyta Zielinska
Jan 14, 2010
Scientists have engineered bacteria that can communicate with each other in a synchronized manner, lighting up in waves of fluorescent green, according to report in this week's Nature. The advance paves the way for developing environmental sensors and drug delivery systems that can time the release of medicines in periodic bursts.
A supernova burst in a colony of coupled
genetic clocks after critical cell density
Image: Tal Danino, Octavio Mondragon-
Palamino, Lev Tsimring
"I think [the study] represents the state of the art of our ability to create synthetic gene networks," said linkurl:James Collins;http://www.bu.edu/dbin/bme/people/primary/collins.php of Boston University. "It was really brilliant that they were able to pull it off." linkurl:Jeff Hasty;http://biodynamics.ucsd.edu/index.html and colleagues at the University of California, San Diego, engineered a very simple positive feedback loop using just two genes, plus the green fluorescent protein gene as a reporter. "The beauty of this thing is its simplicity," said...




Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?