Menu

Enhancers Drive Pancreatic Cancer Metastasis: Study

Mouse organoids reveal that a protein active during embryonic development joins forces with gene enhancers to revert cancer cells to an earlier developmental state.

Jul 27, 2017
Diana Kwon

Organoids grown from pancreatic tissue. Red-colored organoids are composed of normal cells; green organoids are grown from pancreatic tumor samples.TUVESON LAB, CSHLPancreatic ductal adenocarcinoma (PDA), a common form of pancreatic cancer, is often fatal due to its high tendency to metastasize. In a study published today (July 27) in Cell, scientists have uncovered a mechanism in mice that may be driving the spread of this cancer.

To examine the changes that promote cancer metastasis, researchers first developed organoids using primary tumor and metastatic cells from a mouse model of PDA. By comparing these mini organs, the team found that metastatic organoids had more active enhancers, short DNA sequences that bind to transcription factors to enhance gene expression, than the ones derived from primary tumor cells.

Further analysis revealed that FOXA1, a protein active during embryonic development, was binding to these enhancers. In addition, cells with higher levels of this molecule displayed an increased expression of genes found during earlier developmental states.

“We show that to metastasize, the cell has to change, in effect, its whole telecommunications network—its enhancers are being reprogrammed,” study co-author Christopher Vakoc, a cancer epigenetics researchers at Cold Spring Harbor Laboratory, says in a statement. “It seems quite plausible from our results that reprogramming of enhancers enables cancer cells, generally, to achieve metastatic competence.”

When Vakoc and colleagues injected organoids producing high levels of FOXA1 into the pancreata of mice, the animals formed tumors that spread to the lungs. The cancer did not spread in animals injected with organoids lacking FOXA1.

The researchers also assessed human pancreatic cancer tissue, and found that amounts of FOXA1 increased with disease severity, with higher levels in metastatic lesions than in primary tumors.

“The future goal will be to try to utilize this information to benefit metastatic pancreatic cancer patients,” study coauthor Chang-Il Hwang, a postdoc at Cold Spring Harbor Laboratory, tells Genetic Engineering and Biotechnology News.

July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.