Epi-embryonic stem cells?

Researchers have provided clues about a potentially new source of human stem cells that are physically close to the actual embryo, but miles away from the controversy surrounding its use in research. Last night, at the linkurl:Keystone meeting;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cells, linkurl:Ursula Manuelpillai;http://www.med.monash.edu.au/ob-gyn/staff/ursulam.html at the Monash Institute of Medical Research in Victoria, Australia presented a poster

Alison McCook
Mar 31, 2006
Researchers have provided clues about a potentially new source of human stem cells that are physically close to the actual embryo, but miles away from the controversy surrounding its use in research. Last night, at the linkurl:Keystone meeting;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cells, linkurl:Ursula Manuelpillai;http://www.med.monash.edu.au/ob-gyn/staff/ursulam.html at the Monash Institute of Medical Research in Victoria, Australia presented a poster in which they detail the potential of human amniotic epithelial cells (HAECs) in the inner membrane that protects the fetus during pregnancy. The researchers exposed HAECs to factors that nudge them to differentiate into cell types. Indeed, the cells displayed markers that suggest they differentiated into a variety of cells, such as astrocytes, neurons, hepatocytes, and pancreatic cells. "I?m not saying the cells are pluripotent, but they certainly have the markers of pluripotency," Manuelpillai told me. HAECs did not produce teratomas in mice testes -- an initially disappointing result, Manuelpillai said, since teratomas are...

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?