Menu

Giant Plankton May Help Move Plastic Pollution to Sea Floor

Researchers show that pinkie-size marine organisms can ingest and poop out microplastics, potentially transporting them to the depths.

Aug 16, 2017
Bob Grant

The inner mucus filter of a giant larvacean, a member of the genus Bathochordaeus© 2017 MBARIPlastic pollution has emerged as a real threat to Earth’s ecosystems, especially in the ocean. But microscopic bits of plastic that swirl near the surface may have a route to deeper layers. Giant larvaceans, members of the marine zooplankton that swim in the upper layers of ocean waters worldwide, may be capable of ingesting microplastic pollution and transporting it to deeper parts of the sea, according to researchers at the Monterey Bay Aquarium Research Institute (MBARI).

“We’re really at the tip of the iceberg in understanding really where these plastics are winding up,” study coauthor and MBARI researcher Kakani Katija tells The Verge.

Katija and her colleagues performed experiments in which they fed plastic particles smaller than sand grains to the giant larvacean Bathochordaeus stygius, a frequent visitor of Monterey Bay. B. stygius, like other giant larvaceans, constructs massive nests made of mucus, which they use to filter about 11 gallons of sea water per hour. When the MBARI team members fed fluorescent microplastic bits to 25 larvaceans, they found that the majority of the planktonic organisms ingested the particles and pooped them out within 12 hours. They published their findings yesterday (August 16) in Science Advances.

When giant larvaceans excrete microplastics or when they shed their mucus feeding nets, which also trapped the particles, both sink. The authors suspect the waste may be consumed by deep sea-dwelling organisms, providing a route for the pollutants to enter new ecosystems.

“Plastics are sometimes seen as a sea surface issue, and more and more we’re seeing that’s not necessarily true,” Katija tells Science News.

Although the researchers admit that the larvaceans typically swim at depths lower than those at which microplastics float, their findings map a potential route for transfer of the pollutants to new depths. “We are finding pieces of microplastic in deep sea animals and in sea floor sediments,” Anela Choy, Katija’s MBARI colleague and a coauthor on the paper, tells Wired. “We often think of it as just a surface pollution problem, but there are many mechanisms that can transport the [plastic] pollution down from the surface.”

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.