Menu

How Tinier Theropods Took Flight

Downsizing dinosaurs was key to the evolution of birds, a study shows. 

Aug 4, 2014
Jyoti Madhusoodanan

SCIENCE, DAVIDE BONNADONNASongbirds and fluffy chicks are known to be the descendants of monstrous dinosaurs, but exactly how certain lineages evolved into today’s birds has been a mystery. A steady shrinking of one group, bipedal carnivores known as theropods, may have driven the dinosaur-bird transition, according to results published last week (August 1) in Science.

An analysis of nearly 120 dinosaur species and more than 1,500 skeletal features revealed that the theropod lineages that are thought to have been direct ancestors of birds evolved skeletal adaptations four times faster than other dinosaurs. These avian ancestors consistently miniaturized over a 50-million-year period, which likely facilitated the evolution of flight, and features such as skulls with shorter snouts, but bigger brains and eyes, the authors noted.

“What was impressive was the consistency of the size change along the dinosaur-to-bird transition, with every descendant smaller than its ancestor,” study author Michael Lee of the South Australian Museum in Adelaide told the BBC.

Tinier theropods may have found it easier to adapt to different resources—such as habitats or prey—than their larger kin. “It would have permitted them to chase insects, climb trees, leap and glide, and eventually develop powered flight,” Lee told The Washington Post. “All of these activities would have led to novel new anatomical adaptations.”

Lee and his coauthors identified 12 significant evolutionary time points during which theropods branched into different lineages. One key distinction they observed was when a group called Tetanurae evolved an angled thigh bone, shifting their center of gravity forward into the posture of modern birds. The change “paved the way for flight, and would not have been possible at a larger body size,” Lee told New Scientist.

“When you are small, it’s a totally different ball game. You can fly and glide and I think that’s what drove it,” Paul Sereno of the University of Chicago who was not involved in the work told the Associated Press. Sereno described the analysis as innovative, and said the results were “key to what went on at the origin of birds.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!