Menu

Insulin-Producing Mini Stomachs

Scientists grow gastric organs in vitro that can restore insulin production when transplanted into mice.

Feb 22, 2016
Catherine Offord

A section of the mini stomach with cell nuclei (blue), insulin-producing cells (red), and gastric stem and progenitor cells (green)CHAIYABOOT ARIYACHET (VIA EUREKALERT)In type I diabetes, insulin-producing beta cells in the pancreas are destroyed by the immune system, reducing an individual’s capacity to regulate glucose levels in the blood. Now a team led by researchers at Harvard has reported a new method to create personalized insulin-producing organs in vitro, which can restore normal blood-glucose levels when transplanted into mice with the disease. The findings were published last week (February 18) in Cell Stem Cell.

“In various disease states, you have a constant loss of beta cells,” study coauthor Qiao Zhou of Harvard University said in a statement. “We provide, in principle, an advantage to replenish those.”

Cells in a region called the pylorus, between the stomach and the small intestine, frequently regenerate and also show several similarities in gene expression to beta cells. When the researchers engineered mice that expressed three genes known to promote beta cell production, they found that these pylorus cells were converted into insulin-secreting cells, and could restore normal glucose levels in the blood.

“We looked all over, from the nose to the tail of the mouse,” said Zhou in the statement. “We discovered, surprisingly, that some of the cells in the pylorus region of the stomach are most amenable to conversion to beta cells. This tissue appears to be the best starting material.”

To demonstrate the medical applications of the method, the team removed pylorus cells from diabetic mice, converted them to beta cells in vitro, and then grew them into insulin-producing, mini gastric organs. Transplanting these organs back into the animals they came from restored insulin secretion—and normal blood-glucose levels—in five of 22 mice.

The team is already working with equivalent mini stomachs grown from human tissue, Zhou told Medical News Today. “We are now testing them in mouse models,” he said. “Our aim is to generate patient-specific beta-cells from these samples and transplant them back.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!