Menu

Insulin-Producing Mini Stomachs

Scientists grow gastric organs in vitro that can restore insulin production when transplanted into mice.

Feb 22, 2016
Catherine Offord

A section of the mini stomach with cell nuclei (blue), insulin-producing cells (red), and gastric stem and progenitor cells (green)CHAIYABOOT ARIYACHET (VIA EUREKALERT)In type I diabetes, insulin-producing beta cells in the pancreas are destroyed by the immune system, reducing an individual’s capacity to regulate glucose levels in the blood. Now a team led by researchers at Harvard has reported a new method to create personalized insulin-producing organs in vitro, which can restore normal blood-glucose levels when transplanted into mice with the disease. The findings were published last week (February 18) in Cell Stem Cell.

“In various disease states, you have a constant loss of beta cells,” study coauthor Qiao Zhou of Harvard University said in a statement. “We provide, in principle, an advantage to replenish those.”

Cells in a region called the pylorus, between the stomach and the small intestine, frequently regenerate and also show several similarities in gene expression to beta cells. When the researchers engineered mice that expressed three genes known to promote beta cell production, they found that these pylorus cells were converted into insulin-secreting cells, and could restore normal glucose levels in the blood.

“We looked all over, from the nose to the tail of the mouse,” said Zhou in the statement. “We discovered, surprisingly, that some of the cells in the pylorus region of the stomach are most amenable to conversion to beta cells. This tissue appears to be the best starting material.”

To demonstrate the medical applications of the method, the team removed pylorus cells from diabetic mice, converted them to beta cells in vitro, and then grew them into insulin-producing, mini gastric organs. Transplanting these organs back into the animals they came from restored insulin secretion—and normal blood-glucose levels—in five of 22 mice.

The team is already working with equivalent mini stomachs grown from human tissue, Zhou told Medical News Today. “We are now testing them in mouse models,” he said. “Our aim is to generate patient-specific beta-cells from these samples and transplant them back.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!