Menu

Memories Erased from Snail Neurons

Scientists block particular enzymes to remove the cellular signatures associated with specific memory types.  

Jun 28, 2017
Diana Kwon

Two Aplysia sensory neurons (dark grey) with synaptic contacts on a motor neuron (red)SCHACHER LAB/COLUMBIA UNIVERSITY MEDICAL CENTER

By blocking specific enzymes, researchers were able to selectively remove memories stored in the neurons of Aplysia, a sea slug. These findings, published last week (June 22) in Current Biology, demonstrate that distinct memories stored in connections to a single nerve cell can be manipulated separately.

“We were able to reverse long-term changes in synaptic strength at synapses known to contribute to different forms of memories,” study coauthor Samuel Schacher, a neuroscientist at Columbia University, told Motherboard.

By stimulating multiple Aplysia sensory neurons that make connections with to the same motor neuron, Schacher and colleagues induced associative memory, which involves learning the relationship between two previously unrelated items (a new acquaintance’s name, for example), and non-associative memory, where recollections are unrelated to a specific event. The team measured the strength of the synaptic connections between the sensory and motor neurons and discovered that distinct forms of an enzyme, protein kinase M (PKM), played a role in developing the changes linked to the two types of memory. Selectively blocking these molecules, the researchers found, allowed them to remove the memories of their choice.

Molecules associated with memory have been discovered in the past. For example, in a 2006 Science study, another team of researchers was able to erase memories in mice by blocking a related molecule, PKM-zeta. Subsequent papers, however, found that mice lacking this enzyme had no problem forming memories. 

More work is needed before this recent study can be translated to humans, but in the meantime, the experiment “demonstrates that there are diverse mechanisms by which neurons maintain memories in the brain and provides hope that someday we will be able to selectively remove pathological memories,” study coauthor Wayne Sossin, a neuroscientist at McGill University, says in a statement

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.