Menu

Microparticles Deliver Oxygen

Researchers have developed fast-dissolving particles that may one day prevent organ damage or death by instantly infusing oxygen into the blood.

Jun 29, 2012
Bob Grant

Red blood cellsWIKIMEDIA COMMONS, MDOUGM

Scientists have crafted an injectable foam containing oxygen-carrying microparticles that could potentially be used to resuscitate patients undergoing severe oxygen deprivation. The team of researchers, most of whom work at Children's Hospital Boston, demonstrated that the microparticle solution could rapidly oxygenate the blood of rabbits struggling to breath in low oxygen conditions. They report their findings in the latest issue of Science Translational Medicine.

"This is a potential breakthrough," Peter Laussen, cardiac intensive care doctor at Children's Hospital Boston who was not involved in the work, told ScienceNOW. "You can apply this across healthcare, from the battlefield to the emergency room, intensive care unit, or operating room."

A body deprived of oxygen is a body in trouble. When major organs like the brain and heart don't receive an adequate supply of oxygen they falter and fail, sometimes in minutes. Traditionally, physicians used therapies such as CPR and tracheal intubation, where a breathing tube ventilates the lungs after being inserted into a patient's windpipe, to deliver fresh oxygen to the bloodstream of a person in the midst of a medical emergency.

The microparticles, which consist of spherical shells of lipids surrounding a small bubble of oxygen gas, deliver oxygen almost immediately to red blood cells in a way that is safer and more rapid than currently used methods. The research team, led by Children’s Hospital Boston cardiologist John Kheir, found that the solution could completely saturate red blood cells in oxygen-deprived rabbits within seconds of injection, and they kept rabbits with totally blocked airways alive for 15 minutes using the oxygen-infused microparticles. "Essentially as soon as we started injecting it, clinically we started to see an effect," Kheir told ScienceNOW.

Researchers are now testing the microparticle solution on large animals, and if those and later human clinical trials are successful, the therapy could make its way into the clinic or other emergency situations. "This is still in its infancy," Laussen added, "but this idea of a new and novel way to effectively deliver oxygen is, I think, very exciting."

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.