Menu

MicroRNAs Prevent Cell Reprogramming

A group of microRNAs can inhibit the formation of induced pluripotent stem cells, and may provide a target for more efficient reprogramming of somatic cells.

Oct 24, 2011
Cristina Luiggi

WELLCOME IMAGES, STEPHEN ELLIMAN

A group of microRNAs known as miR-34 miRNAs prevent the reprogramming of cells by inhibiting pluripotency-associated genes, a new study published yesterday (October 23) in Nature Cell Biology has found. The findings suggest that blocking miR-34 miRNAs may lead to more efficient reprogramming of somatic cells into induced pluripotent stem cells (iPSCs).

MiR-34 production is regulated by the tumor suppressor protein p53—which is known to repress reprogramming, and thus iPSC generation, by modulating the expression of several pluripotency-associated genes. Researchers found that MiR-34 miRNAs repress somatic cell reprogramming by inhibiting some of the pluripotency-associated genes downstream of p53.

 

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.