Menu

Molecular Trigger for Organ Rejection in Mice Identified

The cell-surface receptor, SIRP-alpha, initiates the innate immune response in hosts.  

Jun 27, 2017
Diana Kwon

ISTOCK, TIRIPEROAround half of all organ transplants in humans are rejected by the recipient's immune system within 10 to 12 years. Scientists studying mice have now identified a key cell receptor that triggers this process. Their results were published last week (June 23) in Science Immunology.

"For the first time, we have an insight into the earliest steps that start the rejection response," study coauthor Fadi Lakkis of the University of Pittsburgh's Thomas E. Starzl Transplantation Institute, says in a statement. "Interrupting this first recognition of foreign tissues by the innate immune system would disrupt the rejection process at its earliest inception stage and could prevent the transplant from failing."

Using positional cloning, a method that can identify genetic mutations, Lakkis and colleagues discovered that SIRP-alpha, a cell-surface receptor that varies across individual mice, was responsible for activating the innate immune response—the body's first-line, nonspecific defense mechanism. When the researchers transplanted tissue from one mouse into a host animal with different SIRP-alpha receptors, the molecule bound to the CD47 receptor on the recipient's monocytes, a type of innate immune cell, and generated a rejection response.

Since human cells also express SIRP-alpha, sequencing this gene to identify donors with matching molecules could help reduce rejection rates, Lakkis says in the statement.

"One can imagine these interactions being critical in providing a constant trigger that poises the immune response to reject the organ, and thus new therapies that limit the function of these receptors may promote organ survival," Anita Chong, a professor of surgery at the University of Chicago who was not involved in the study, told the Pittsburgh Post-Gazette. "This is a possibility, although much work needs to be done to test whether this molecular pathway will actually impact the outcome of organ transplants in the clinic."

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.