Menu

Molecule Similar to Peptides Detected in Protostars

The dust surrounding emerging, Sun-like stars contains methyl isocyanate, an organic molecule.

Jun 9, 2017
Kerry Grens

Star formation where astronomers detected methyl isocyanate (inset: drawing of molecule)ESO/DIGITIZED SKY SURVEY 2/L. CALCADAScientists have detected, in the constellation Ophiuchus, about 400 light-years away, an organic molecule similar to protein building blocks. Methyl isocyanate is present in dust surrounding baby stars that will one day resemble our own Sun, supporting the idea that life’s raw ingredients were spawned from the formation of the solar system.

Martín-Doménech from the Centro de Astrobiología in Madrid, Spain, and colleagues used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to look for telltale signatures of the molecule in radio spectra. They reported their results in the Monthly Notices of the Royal Astronomical Society.

“Either life originated completely on the surface of the Earth, or some building blocks were formed in the solar nebula prior to the formation of the Earth and delivered by comets to our planet, where biochemical reactions continued leading to the formation of the first living organisms,” Martín-Doménech tells WIRED. “The detection of this molecule points toward the latter theory.”

Another group of astronomers, led by Niels Ligterink at the Leiden Observatory in the Netherlands and Audrey Coutens at University College London, published similar findings in the same journal. Both papers were announced yesterday (June 8).

“It shows the level of complexity you can get to before planets form is pretty high,” Karin Öberg, an astrochemist at the Harvard-Smithsonian Center for Astrophysics who was not involved in the work, tells Science. “A lot of [spectral] lines were detected, which gives confidence that it’s real. It’s a safe detection.”

The multiple-star system where the methyl isocyanate signal was picked up also contains components of the simple sugar glycolaldehyde, a finding reported in 2012.

“This star system seems to keep on giving! Following the discovery of sugars, we’ve now found methyl isocyanate. This family of organic molecules is involved in the synthesis of peptides and amino acids, which, in the form of proteins, are the biological basis for life as we know it,” Ligterink and Coutens say in a press release.

Still, there remain questions about how life started on Earth. Oberg cautions in the Science article against jumping to conclusions. “We don’t know the chemical process. We don’t know if methyl isocyanate is crucial, and we don’t know how peptides form.”

 

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Application of TruBIOME™ to Increase Mouse Model Reproducibility
Application of TruBIOME™ to Increase Mouse Model Reproducibility
With this application note from Taconic, learn about the effects of the microbiome on reproducibility and predictability and how TruBIOME™ helps researchers generate custom microbiota mouse models!
Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.