Menu

Mutation vs. Mutation

Yeast study finds many instances—often among related genes—in which a mutation in one gene cancels the negative effects of a mutation in another.

Nov 3, 2016
Kerry Grens

WIKIMEDIA, RAINIS VENTAHaving a genetic defect isn’t a guarantee that a faulty phenotype will follow. In some cases, a suppressor mutation—variation in a different gene—can block the otherwise untoward consequences of another mutation. In a yeast genetics study published in Science today (November 3), scientists show that such suppression often occurs by genes with related cellular duties.

“We’ve uncovered fundamental principles of genetic suppression and show that damaging mutations and their suppressors are generally found in genes that are functionally related,” coauthor Charles Boone, who studies genomics at the University of Toronto, said in a press release. “Instead of looking for a needle in the haystack, we can now narrow down our focus when searching for suppressors of genetic disorders in humans. We’ve gone from a search area spanning 20,000 genes to hundreds, or even dozens.”

Boone and colleagues combed through the yeast literature to build a network of 1,800 genetic-suppression interactions. With whole-genome sequencing, they added 200 more suppressor mutations to this bunch, to look for those variants that rescue genetic defects.

Most of the suppression interactions they assembled were previously unknown connections between the genes, “thus providing new information about the functional wiring diagram of a cell,” the authors wrote in their report.

“We don’t really understand why some people with damaging mutations get the disease and some don’t,” coauthor Frederick Roth of the University of Toronto said in the statement. “Some of this could be due to environment, but a lot of could be due to the presence of other mutations that are suppressing the effects of the first mutation.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!