Menu

Mutation vs. Mutation

Yeast study finds many instances—often among related genes—in which a mutation in one gene cancels the negative effects of a mutation in another.

Nov 3, 2016
Kerry Grens

WIKIMEDIA, RAINIS VENTAHaving a genetic defect isn’t a guarantee that a faulty phenotype will follow. In some cases, a suppressor mutation—variation in a different gene—can block the otherwise untoward consequences of another mutation. In a yeast genetics study published in Science today (November 3), scientists show that such suppression often occurs by genes with related cellular duties.

“We’ve uncovered fundamental principles of genetic suppression and show that damaging mutations and their suppressors are generally found in genes that are functionally related,” coauthor Charles Boone, who studies genomics at the University of Toronto, said in a press release. “Instead of looking for a needle in the haystack, we can now narrow down our focus when searching for suppressors of genetic disorders in humans. We’ve gone from a search area spanning 20,000 genes to hundreds, or even dozens.”

Boone and colleagues combed through the yeast literature to build a network of 1,800 genetic-suppression interactions. With whole-genome sequencing, they added 200 more suppressor mutations to this bunch, to look for those variants that rescue genetic defects.

Most of the suppression interactions they assembled were previously unknown connections between the genes, “thus providing new information about the functional wiring diagram of a cell,” the authors wrote in their report.

“We don’t really understand why some people with damaging mutations get the disease and some don’t,” coauthor Frederick Roth of the University of Toronto said in the statement. “Some of this could be due to environment, but a lot of could be due to the presence of other mutations that are suppressing the effects of the first mutation.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery Group plc, a global leader in gene editing and gene modulation technologies, today announced the launch of its Myeloid DNA Reference Standard. The first-to-market large cell-line derived myeloid cancer reference standard designed enables faster, more reliable and more cost-effective assay validation, to support the market in bringing routine testing into practice.

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!