Menu

New CRISPR-Based Tools Flag Genetic Sequences and Log Data

SHERLOCK and DETECTR can identify particular nucleic acid sequences, while CAMERA records events in human and bacterial cells.

Feb 16, 2018
Diana Kwon

A collection of SHERLOCK testsZHANG LAB, BROAD INSTITUTE OF MIT AND HARVARD

Three separate groups reported new CRISPR-based techniques—two nucleic-acid detectors and one cell data recorder—in papers published yesterday (February 15) in Science.

One of the new tools, dubbed DETECTR (DNA Endonuclease Targeted CRISPR Trans Reporter) was developed in Jennifer Doudna’s lab at the University of California, Berkeley. It takes advantage of the CRISPR enzyme Cas12a’s ability to continue cutting single-stranded DNA after identifying and cutting its target. By programming CRISPR-Cas12a to home in on distinct sequences in different types of human papillomaviruses (HPV) and linking it a “molecular neon sign, which literally glows when Cas12a starts shredding DNA,” the team was able to rapidly identify specific HPV strains from patient samples in test tubes, STAT News reports.

“Certainly there are improvements to be made, but as far as a proof of principle experiment we were really excited,” study coauthor Janice Chen, a fellow in Doudna’s lab, tells The Verge.

A paper from MIT’s Feng Zhang and his colleagues describes a similar tool—a new version of a CRISPR-based nucleic acid detecting platform, SHERLOCK, which debuted last year. At the time, the researchers reported that the device could genotype human DNA and identify both pathogens and cancerous mutations. The new version of SHERLOCK is three times more sensitive than the original and can detect multiple genetic signatures at once.

Both DETECTR and SHERLOCK could one day be used to cheaply and quickly diagnose infections. They enable “a new generation of diagnostics that may be more widely available and more cost effective than current technologies,” Mitchell O’Connell, a professor of biophysics and biochemistry at the University of Rochester who was not involved in either study, tells The Verge.

See “CRISPR-Based Nucleic Acid Test Debuts

The third study unveils two CRISPR-based systems, both dubbed CAMERA (CRISPR-mediated analog multi-event recording apparatus), that can record specific events, such as exposure to antibiotics, nutrients, or light, in bacterial and human cells. “There are a lot of questions in cell biology where you’d like to know a cell’s history,” coauthor David Liu of Harvard University and the Howard Hughes Medical Institute tells STAT News. “We set out to turn changes in a cell’s state into permanent changes in its DNA.”

For both systems, Liu and his colleague programmed CRISPR-Cas9 to activate under specific conditions, such as in the presence of a drug, nutrient, or virus. According to STAT News, these devices could one day be adapted into biological sensors for the environment or as a tool to document which genes are turned on or off during the course of development.

“We’re finding more and more creative ways to make use of these tools, catching up with the diverse applications” of CRISPR in nature, Liu tells STAT News

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.