Menu

New Human Brain Language Map

Researchers find that Wernicke’s area, thought to be the seat of language comprehension in the human brain for more than a century, is not.

Jun 26, 2015
Bob Grant

Wernicke's area, long considered the seat of language comprehension in the human brain, may not be.WIKIMEDIA, DATABASE CENTER FOR LIFE SCIENCEThe map of language centers in the human brain is being redrawn. Researchers at Northwestern University have determined that Wernicke’s area, a hotdog-shape region in the temporal lobe of the left hemisphere, may not be the seat of language comprehension, as has been scientific dogma for the past 140 years. Instead, the team suggests in a study published today (June 25) in the neurology journal Brain, understanding the meaning of words happens in the left anterior temporal lobe, while sentence comprehension is handled by a complex network of brain areas.

“This provides an important change in our understanding of language comprehension in the brain,” Marek-Marsel Mesulam, lead study author and director of Northwestern’s Cognitive Neurology and Alzheimer’s Disease Center, said in a statement.

Neuroscientist Carl Wernicke discovered in 1874 that some stroke victims with damage to the left sides of their brains suffered language impairment, which came to be known as Wernicke aphasia. Because those patients could often speak clearly, though nonsensically, and had trouble understanding simple instructions, Wernicke and other researchers surmised that the patients’ strokes had damaged the language comprehension center of the brain.

Instead of working with stroke victims, Mesulam and his colleagues studied patients with a rare form of language-affecting dementia called primary progressive aphasia (PPA). Mesulam, who is a leading expert on PPA, realized that PPA patients with damage to Wernicke’s area did not exhibit the same same trouble with word meaning as stroke victims with similar brain damage.

So he and his colleagues performed language tests and brain MRIs on 72 PPA patients with damage inside and outside of Wernicke’s area. They found that PPA patients with reduced cortical thickness in Wernike’s area could still understand words, but had varying degrees of trouble comprehending sentences. None of them had the widespread problems with language comprehension noted in stroke victims.

PPA and stroke damage the brain differently; in PPA, cortical areas degenerate, but their underlying fiber pathways, necessary for communication between different language centers in the brain, remain intact. Stroke, however, damages large swathes of brain matter.

“In this case, we saw a different map of language by comparing two different models of disease, one based on strokes that destroy an entire region of brain, cortex as well as underlying pathways, and the other on a neurodegenerative disease that attacks mostly brain cells in cortex rather than the region as a whole,” Mesulam said in the press release.

This means that language comprehension is much more diffuse and complicated in the brain, and the process likely relies on many interconnected brain regions, rather than one constrained area. “There is no center but a network of interconnected areas, each with a slightly different specialization,” Mesulam told Motherboard.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.