Menu

Pollution Drives Marine Reptile Color Change

The turtle-headed sea snake is losing its stripes, and researchers suggest that the change reflects adaptation to fouled oceans.

Aug 11, 2017
Bob Grant

The melanistic form of the turtle-headed sea snake (Emydocephalus annulatus)IMAGE: CLAIRE GOIRAN / CURRENT BIOLOGYIn another illustration of the “industrial melanism,” populations of a sea snake species in the South Pacific are becoming increasingly dark as a result of pollution, researchers claim in a new study. The poster child of the phenomenon has been the peppered moth, whose populations vacillated between dark and light color morphs because of 19th century England’s soot-covered landscapes.

The study, published in Current Biology yesterday (August 10), provides evidence that some populations of the turtle-headed sea snake (Emydocephalus annulatus) are becoming dominated by more-uniformly dark-pigmented individuals, whereas other populations contain more-familiar color morphs that have alternating dark and light patches or stripes. The key to this apparent melanistic adaptation, the authors of the study suggest, is pollution, such as nickel, from mining runoff close to the shore of the Pacific Island of New Caledonia. Snakes in these urban populations, they write, “accumulate trace elements, which are expelled when the skin is sloughed.”

By measuring levels of trace elements in the evenly colored populations compared to populations with lower toxic exposures, the researchers found that more algae accumulated on darker patches of skin, and this skin was subsequently sloughed more frequently. This would give an adaptive advantage to darker snakes compared to their banded brethren, even within one population.

“That algal cover reduces the snake’s swimming speed by about 20 percent, and makes it slough its skin more often (to get rid of the algae),” study coauthor Rick Shine, a university of Sydney researcher, tells Gizmodo. “Until the idea about trace elements came along, I thought that black color was a disadvantage—but now it looks like the advantage of excreting trace-element pollutants may be great enough to overcome the algal-fouling problem.”

But are the snake populations really evolving in response to the pollution that besets their watery habitats? Some scientists are not yet fully convinced. “I have no problems in accepting that the dark areas in the skin have a higher concentration of pollution,” Arne Rasmussen, a herpetologist at the Schools of Architecture, Design and Conservation at the Royal Danish Academy of Fine Arts in Copenhagen, tells Nature. Other environmental factors, such as temperature, might explain the change, he adds.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!