Menu

Probing Down Syndrome with Mini Brains

Researchers create cerebral organoids using induced pluripotent stem cells from patient skin cells and characterize protein-expression changes linked to cognitive impairment.

Oct 20, 2015
Bob Grant

WIKIMEDIA, NATIONAL HUMAN GENOME RESEARCH INSTITUTEInduced pluripotent stem cells (iPSCs) grown from the skin cells of a person with Down syndrome are helping researchers grow cerebral organoids and track protein expression in an effort to better understand the disorder on a cellular and molecular level. University of Colorado Boulder postdoc Tristan McClure-Begley and his colleagues sought to better understand the neurological and developmental changes that occur in people with a third copy of chromosome 21, the unifying pathological feature of Down syndrome. “That third copy of chromosome 21 influences all aspects of embryonic development, including critical steps during brain development,” McClure-Begley said in a statement. “But we’ve had trouble identifying exactly why the extra chromosome has such widespread effects, partly because we’ve lacked good human tissue models of Down syndrome.”

So McClure-Begley and his colleagues took a fibroblast from a single Down syndrome patient, coaxed it into becoming two iPSC lines, and then reprogrammed those cells into neural progenitor cells that self-organized into cerebral tissue in vitro. “So we get a window into what an individual central nervous system development looked like from a cellular and molecular level,” he said during a Monday (October 19) press conference at the Society for Neuroscience (SfN) annual meeting held in Chicago.

The researchers found that protein expression did not follow a simple 1:1 ratio with the extra genes on the triplicate chromosome 21 leading to a proportional increase in proteins expressed. “Rather, there’s a complex change, where some proteins are upregulated, some proteins are downregulated—all reflecting a general disturbance in signaling,” McClure-Begley said. Many of the perturbed proteins were involved in early neurogenesis and cell cycle regulation, among other functions.

Earlier this year, researchers in Germany reported similar success growing cerebral organoids from iPSCs derived from skin cells of people with autism.

McClure-Begley added that his group plans to generate as many organoids from Down syndrome patients as possible in order characterize protein-expression profiles across the spectrum of the disorder, from mild to severe. “We can start observing . . . the discrete factors in their genome not on chromosome 21 that can influence the severity of their clinical presentation of Down syndrome,” he said. “By doing that, it’s our hope that we will actually be capable of then correlating clinical severity with a molecular signature from these tissues, thereby informing our ability to come up with tailored, personalized treatments to improve quality of life.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing