Menu

Reducing Gene Therapy-Related Risk

In a mouse model of a rare disease, scientists have figured out how to reduce the elevated cancer risk tied to a gene therapy treatment.

Jan 22, 2015
Kerry Grens

WIKIMEDIA, RAMAWhen treated with a gene therapy, a mouse model of methylmalonic acidemia—an uncommon metabolism deficiency—responds well. But although the mice’s metabolic problems, and their related untoward effects, are reduced, the animals end up with an increased risk for liver cancer. A study published in the Journal of Clinical Investigation this week (January 20) finds that the gene therapy delivery vector’s insertion in the mouse genome appears to be responsible.

It turned out that when National Institutes of Health researchers moved the insertion site to another part of the genome, the mice no longer developed cancer at the higher rates.

“Most of the AAV [adeno-associated virus] integrations that caused liver cancer landed in a gene that is not found in the human genome, which suggests that the cancers we observed after AAV gene therapy may have been a mouse-specific phenomenon,” said lead author Randy Chandler in a press release. “However, these studies do convincingly demonstrate that AAV can be a cancer-causing agent, which argues for further studies.”

The initial insertion in a locus called Rian led to the overexpression of certain microRNAs. Switching up vectors so that the therapeutic gene would incorporate elsewhere in the genome appeared to solve the problem.

As the authors wrote in their report: “Although experiments in small animals do not always accurately predict clinical outcomes, the genotoxicity we have observed with various AAV vectors warrants concern about the possibility of insertional mutagenesis following AAV gene delivery in humans.” 

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery Group plc, a global leader in gene editing and gene modulation technologies, today announced the launch of its Myeloid DNA Reference Standard. The first-to-market large cell-line derived myeloid cancer reference standard designed enables faster, more reliable and more cost-effective assay validation, to support the market in bringing routine testing into practice.

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!