Menu

Reducing Gene Therapy-Related Risk

In a mouse model of a rare disease, scientists have figured out how to reduce the elevated cancer risk tied to a gene therapy treatment.

Jan 22, 2015
Kerry Grens

WIKIMEDIA, RAMAWhen treated with a gene therapy, a mouse model of methylmalonic acidemia—an uncommon metabolism deficiency—responds well. But although the mice’s metabolic problems, and their related untoward effects, are reduced, the animals end up with an increased risk for liver cancer. A study published in the Journal of Clinical Investigation this week (January 20) finds that the gene therapy delivery vector’s insertion in the mouse genome appears to be responsible.

It turned out that when National Institutes of Health researchers moved the insertion site to another part of the genome, the mice no longer developed cancer at the higher rates.

“Most of the AAV [adeno-associated virus] integrations that caused liver cancer landed in a gene that is not found in the human genome, which suggests that the cancers we observed after AAV gene therapy may have been a mouse-specific phenomenon,” said lead author Randy Chandler in a press release. “However, these studies do convincingly demonstrate that AAV can be a cancer-causing agent, which argues for further studies.”

The initial insertion in a locus called Rian led to the overexpression of certain microRNAs. Switching up vectors so that the therapeutic gene would incorporate elsewhere in the genome appeared to solve the problem.

As the authors wrote in their report: “Although experiments in small animals do not always accurately predict clinical outcomes, the genotoxicity we have observed with various AAV vectors warrants concern about the possibility of insertional mutagenesis following AAV gene delivery in humans.” 

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.