Menu

Regenerative Cardiomyocytes Found

Specialized cardiac cells in the mouse heart appear to be the long-sought-after proliferative heart cells.

Jun 24, 2015
Kerry Grens

WIKIMEDIA, MAKLUMAT IANJUTThe mammalian heart has a slight capacity for regeneration—about one percent of cardiac muscle cells turn over each year. Although such cells are of big interest to scientists developing cardiac therapies, their identity has remained mysterious. Researchers reported in Nature this week (June 22) that they have finally pinned down these proliferating cardiomyocytes in mice.

“For decades, researchers have been trying to find the specialized cells that make new muscle cells in the adult heart, and we think that we have found that cell,” Hesham Sadek, the senior author of the study and a researcher at UT Southwestern Medical Center, said in a press release. “This cell does not appear to be a stem cell, but rather a specialized cardiomyocyte, or heart muscle cell, that can divide, which the majority of cardiomyocytes cannot do.”

Previous studies suggested that the progenitor cells likely live in a hypoxic environment, so Sadek’s team developed a fate-mapping technique that could track the life of hypoxic cardiomyocytes and their daughter cells.

“We identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage,” the authors wrote in their report. “Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart.”

The researchers observed an annual rate of cardiomyocyte production of 0.62 percent, which is pretty much in line with previous estimates (although there has been considerable debate on the topic). Some labs are seeking to tap into the regenerative capacity of the human heart to repair damage after cardiac events, such as heart attacks.

“Now we have a target to study,” Sadek said in the statement. “If we can expand this cell population, or make it divide more, then we can make new muscle cells. This is what this cell does naturally, and we can now work toward harnessing this ability to make new heart muscle when the heart has been damaged.”

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening