Menu

Researchers Produce Alpaca Antibodies Using Yeast

With multiple applications in biomedicine, the antibodies can now be made quickly, cheaply, and without the need for an alpaca or one of its relatives.

Feb 14, 2018
Catherine Offord

PIXABAY, ULLEOCamelids such as camels, llamas, and alpacas make an unusual class of antibodies with a growing number of applications in biomedical science. But researchers wanting to use those antibodies currently have to go through a lengthy and expensive procedure to extract them, limiting the molecules’ use in the lab. Now, a team of US researchers have devised a way to produce the same antibodies in yeast instead, allowing the molecules to be made and identified quickly and cheaply. The findings were published Monday (February 12) in Nature Structural and Molecular Biology.

“There’s a real need for something like this,” study coauthor Andrew Kruse, a biophysicist at Harvard Medical School, says in a statement. “It’s low-tech, it’s a low time investment and it has a high likelihood of success for most proteins. . . . People who have struggled to nail down their protein structures for years with llamas are getting them now.”

In addition to conventional mammalian antibodies, which contain two heavy and two light molecular chains, camelids produce a second set of antibodies made up only of heavy chains. The binding sites of these molecules are known as nanobodies, and, thanks to their smaller size, can bind to otherwise inaccessible parts of proteins. Researchers use the molecules to stabilize a number of peptides of biomedical interest.

Current methods to obtain these unusual antibodies are impractical, requiring immunization of an actual camelid and extraction of the antibodies from the blood. “How many camels are there around?” Tom Moran, the director of the Center for Therapeutic Antibody Development at Mount Sinai’s Icahn School of Medicine who was not involved in the work, tells STAT News. “Yeah, I think that’s a real pain.”

The new method, by contrast, produces the nanobodies using yeast cells in vitro. Using the DNA sequences of camelid nanobody genes, the team created a library of hundreds of millions of nanobodies, each variant attached to a different yeast cell. Then, they used fluorescent markers attached to target proteins to identify only the cells displaying nanobodies that would bind to a particular peptide. “If you have a target protein, there’s at least one nanobody in that pool that will bind to it with reasonably affinity,” Kruse tells STAT News. “It’s just a matter of finding it.”

Although not the only attempt to circumvent the need for a camel, the current approach is faster and more effective than previous methods, and is the first system made freely available for other research groups. “By making nanobody discovery quick and easy, we hope our platform will dramatically accelerate the potential applications of this exciting technology,” study coauthor Conor McMahon of Harvard Medical School says in the statement. He adds: “Hopefully it will work as well or better so we won’t need llamas anymore.”

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!