Menu

Soil Bacteria May “Eat” Antibiotics

Long-term exposure to antibiotics from agricultural run off may encourage the evolution of soil bacteria that break down and consume the antibacterial agents.

Dec 10, 2012
Dan Cossins

Wikimedia, Brian StansberrySoil microbes exposed to antibiotics over a long period evolve the ability to detoxify the compounds, and may even derive nutritional benefit in the process, according to a report out last week (December 6) in the Journal of Environmental Quality.

Antibiotics administered to promote the growth and health of livestock find their way into agricultural soils through the manure of the treated animals, which is used as fertilizer. To see how long-term exposure to these medicines affect bacteria in the soil, researchers set up an experiment more than a decade ago in which plots of land were dosed every year with a mixture of three common veterinary antibiotics—sulfamethazine, tylosin, and chlortetracycline.

Ten years on, the team found that sulfamethazine and tylosin were degraded much more rapidly in soils with a history of antibiotic exposure than in untreated soils, suggesting that antibiotic-degrading microbes are selected for over time. They also found that residues of sulfamethazine were quickly mineralized to carbon dioxide in exposed soils, but not in controls, and subsequently isolated from the treated soil a new strain of Microbacterium, a microbe that uses sulfamethazine as source of carbon and nitrogen.

The findings led the team to propose that under the selective pressure of long-term exposure to antibiotics, microbes may evolve to not only break down the compounds, but also to use them to fuel its own growth. “I think it’s kind of a game changer in terms of how we think about our environment and antibiotic resistance,” lead study author Edward Topp of Agriculture and Agri-Food Canada in London, Ontario, said in a press release.

And although the evolution of antibiotic-eating bacteria means that drugs from agricultural wastes will not linger in the soil for long, the researchers warn that the trait could be transferred to a pathogenic microbe. “A reservoir of antibiotic resistance genes in the environment that is made larger through contamination with agricultural wastes may represent an enhanced threat to human health,” the authors wrote.

July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.