Menu

Stem Cells Not Rejected

Researchers uncover more evidence that reprogrammed stem cells are not attacked by the immune system, suggesting they may one day serve as effective therapies.

Jan 25, 2013
Dan Cossins

WIKIMEDIA, NISSIM BENVENISTYResearchers have coaxed induced pluripotent stem cells (iPSCs) derived from mice to become several different cell lines and transplanted those cells into genetically identical mice without triggering a strong immune response.

The study, published this week (January 24) in Cell Stem Cell, comes hot on the heels of similar findings reported earlier this month, strengthening the case that cells generated from iPSCs could eventually be used for cell replacement therapy to treat various human diseases.

Because iPSCs can be derived from a patient’s own tissues, researchers believed that transplantation into that patient should not provoke an immune response. But in 2011, Yang Xu’s team at the University of California, Sand Diego, called such assumptions into question when they provided evidence that iPSCs derived from mice were attacked and rejected by the immune system when implanted into genetically identical mice.

This prompted Ashleigh Boyd and colleagues at Boston University Medical School to try a similar experiment themselves. They differentiated mouse-derived iPSCs into three different cell lines with two different methods and assessed the immune response, both in vitro and after transplantation into genetically identical mice. They found no evidence that white blood cell count increased in vitro, nor of immune rejection in the transplant experiments.

The researchers concede that the discrepancy between their results and Xu’s findings may result from transplanting the cells into different parts of the body. Nevertheless, they wrote, “our data support the idea that differentiated cells generated from autologous iPSCs could be applied for cell replacement therapy without eliciting immune rejection.”

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN Ltd are pleased to announce the commercial licensing of CRISPR-Cas9 gene-editing technology from Broad Institute of MIT and Harvard in the USA, to develop human cell disease models to support preclinical metabolic disease therapeutic programmes.

Thermo Fisher Scientific: Freezers for Biological Samples

Thermo Fisher Scientific: Freezers for Biological Samples

Fluctuations in temperature can reduce the efficacy, decompose, or shorten the shelf life of biologics. Therefore, it is important to store biologics at the right temperature using standardized protocols.