Menu

Study: Telomeres Don’t Shorten with Age in Longest-Lived Bats

Researchers find that while bats in the Myotis genus don’t produce telomerase, the enzyme that lengthens telomeres, they possess 21 telomere maintenance–related genes.

Feb 8, 2018
Diana Kwon

A flying Myotis myotis bat.OLIVIER FARCY

The longest-lived bats—those belonging to the Myotis genus—may have their telomeres to thank for their slow aging process, according to a study published yesterday (Feb 7) in Science Advances.

“In the longest-lived species of bats telomeres don’t shorten with age,” study coauthor Emma Teeling, a professor of biology and environmental science at University College Dublin, tells The Irish Times. “Whereas in other bats species, humans and other animals they do, causing the age-related breakdown of cells that over the course of a lifetime can drive tissue deterioration and ultimately death.”

Teeling and her colleagues conducted wing biopsies on close to 500 bats of four different species at field sites across Europe. Tissue analysis revealed that while the telomeres shortened with age in two bat species, Rhinolophus ferrumequinum and Miniopterus schreibersii, no such change occurred in species belonging to Myotis, the bat genus with the greatest longevity.

“[Myotis bats] don’t appear to experience age-related mortality,” Teeling tells Motherboard. “They die of things like starvation, or having an accident, or not having enough water.”

The team also discovered that, surprisingly, Myotis bats—like humans—did not produce telomerase, the enzyme that plays a crucial role in telomere synthesis. “These bats are somehow maintaining their telomeres without it,” Teeling tells Motherboard.

When they analyzed the bats’ genomes, Teeling and her colleagues found 21 telomere maintenance–related genes, including ATM and SETX, two genes involved in repairing and preventing DNA damage.

“Our results suggest that long-lived bats have evolved better mechanisms to prevent and repair age-induced cellular damage,” Teeling tells The Irish Times. “Studying wild bats in an ageing context may provide exciting new solutions to slow down the ageing process and ultimately extend human health-spans.”

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.