Menu

Technique Adapted from CRISPR-Cas9 Corrects Mutation in Human Embryos

Researchers use base-editing to swap out an erroneous nucleotide responsible for a potentially life-threatening blood disorder.

Sep 28, 2017
Catherine Offord

ISTOCK, DR_MICROBEA team of Chinese researchers who were the first to report having applied CRISPR to human embryos have done it again—this time upgrading their technique to base-editing, a method of genome editing that corrects point mutations with higher efficiency than traditional CRISPR-Cas9 techniques. The scientists corrected a single nucleotide error responsible for β thalassemia, a potentially life-threatening blood disorder, according to a study published last week (September 23) in Protein and Cell.

Although the resulting embryos were mosaic—that is, they contained both corrected and uncorrected cells—the technique has the potential for higher precision than previous approaches.

See “Advances in Genome Editing

“The paper itself represents a significant technical advance,” Darren Griffin, a geneticist at the University of Kent in the U.K., tells The Guardian. “Rather than using the classic Crispr technology previously reported, the current ‘base editor’ technology is an adaptation that chemically alters the DNA bases themselves.”

See “CRISPR: No Cutting Required

Unlike older technologies, base-editing does not cleave the DNA when it makes an edit—a feature associated with fewer harmful side effects. To test the approach in humans, the Sun Yat-sen University researchers created cloned embryos using tissue from a patient with β thalassemia, which affects around 1 in 100,000 people worldwide, and has been the target of previous CRISPR-based attempts to eradicate disease-causing mutations.

See “CRISPR Corrects Blood Disorder

The team then scanned the DNA in these embryos for the error—a G where there should have been an A—and converted it back using base-editing. Although the researchers acknowledge in their paper that further research is needed before the technique could be used therapeutically in humans, study coauthor Junjiu Huang tells BBC News that “we are the first to demonstrate the feasibility of curing genetic disease in human embryos by base editor system.”

The study’s publication comes just weeks after a US-Korean team reported using CRISPR-Cas9 to eradicate a defective mutation associated with a cardiac disease. That project was hailed as the first study to edit viable human embryos, but was soon met with criticism from other researchers who called the authors’ interpretation of the data into question.

See “Scientists Doubt Results of CRISPR’d Embryos

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.