Menu

The Virtual Physiological Rat

The NIH awards $13 million to create a computer model of a lab rat.

Aug 12, 2011
Jessica P. Johnson

WIKIMEDIA COMMONS, STEVENFRUITSMAAK

Lab rats are finally catching a break. The Medical College of Wisconsin in Milwaukee has received a 5-year, $13 million grant to establish a National Center for Systems Biology, reports Newswise. The first task of the Center will be to create a virtual lab rat—a computer model that will gather all available research data for rats into one place.

By integrating the widespread data into a single model, researchers will be able to better understand rat physiology as a whole and to predict how multiple systems will interact in response to environmental and genetic causes of disease. They will also be able to input multiple causes at once and observe the virtual rat’s physiological response. The research will focus on diseases including hypertension, renal disease, heart failure, and metabolic syndromes.

“The Virtual Physiological Rat allows us to create a model for disease that takes into account the many genes and environmental factors believed to be associated,” Daniel Beard, a computational biologist and the principal investigator on the grant, said in a press release.

But rats aren’t completely off the hook. Once the computer model generates hypotheses about systemic response to disease, researchers will use the information to produce new knockout strains of rats to verify the model’s predictions.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.