Menu

Watching Live Cells

An international team brings the new technology of super-resolution imaging to the world of the living.

Aug 28, 2015
Jef Akst

Filamentous actin, captured by super-resolution structured illumination microscopy VIMEO, HHMI NEWSEric Betzig, Stefan Hell, and William Moerner scooped up the 2014 Nobel Prize in Chemistry for their contributions to the development of super-resolved fluorescence microscopy, which broke the theoretical limit of microscopic resolution imposed by the wavelength of light. Now, Betzig, of Janelia Research Campus in Ashburn, Virginia, and his colleagues have applied the new techniques to watching live cells in action, generating images and videos of protein movement and interactions as the cells internalize molecules. The team published its results this week (August 27) in Science.

“These methods set a new standard for how far you can push the speed and non-invasiveness of super-resolution imaging,” Betzig said in a press release. “This will bring super-resolution to live-cell imaging for real.”

Betzig and his colleagues achieved their success by improving the spatial resolution of structured illumination microscopy (SIM). With traditional SIM, images are generated by switching on the fluorescent labels that researchers have used to tag specific proteins, followed by a wave of light that deactivates most of them. The tags in the darkest regions continue to fluoresce, however, sharpening the image. Repeating this process more than two dozen times can yield a high-resolution composite image. But the time it takes to switch the tags on and off has made the technique tough to apply to live cells. “You’re stressing the molecules, and it takes a lot of time, which you don’t have, because the cell is moving,” Betzig said in the release.

To improve the technique, Betzig and his colleagues turned on only some of the fluorescent tags at a time, an approach they called patterned photoactivation nonlinear SIM. “We can do it and we can do it fast,” he said. Indeed, the researchers were able to capture 25 snapshots (to create a single composite image) in about one-third of a second. They used the new technique to watch as proteins broke down and changed shape as well as the dynamics of cell-surface pits called caveolae.

This movie allowed the researchers to measure the effect of the actin cytoskeleton on clathrin-mediated endocytosis.

High NA SIM from HHMI NEWS on Vimeo

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!