Menu

Watching Live Cells

An international team brings the new technology of super-resolution imaging to the world of the living.

Aug 28, 2015
Jef Akst

Filamentous actin, captured by super-resolution structured illumination microscopy VIMEO, HHMI NEWSEric Betzig, Stefan Hell, and William Moerner scooped up the 2014 Nobel Prize in Chemistry for their contributions to the development of super-resolved fluorescence microscopy, which broke the theoretical limit of microscopic resolution imposed by the wavelength of light. Now, Betzig, of Janelia Research Campus in Ashburn, Virginia, and his colleagues have applied the new techniques to watching live cells in action, generating images and videos of protein movement and interactions as the cells internalize molecules. The team published its results this week (August 27) in Science.

“These methods set a new standard for how far you can push the speed and non-invasiveness of super-resolution imaging,” Betzig said in a press release. “This will bring super-resolution to live-cell imaging for real.”

Betzig and his colleagues achieved their success by improving the spatial resolution of structured illumination microscopy (SIM). With traditional SIM, images are generated by switching on the fluorescent labels that researchers have used to tag specific proteins, followed by a wave of light that deactivates most of them. The tags in the darkest regions continue to fluoresce, however, sharpening the image. Repeating this process more than two dozen times can yield a high-resolution composite image. But the time it takes to switch the tags on and off has made the technique tough to apply to live cells. “You’re stressing the molecules, and it takes a lot of time, which you don’t have, because the cell is moving,” Betzig said in the release.

To improve the technique, Betzig and his colleagues turned on only some of the fluorescent tags at a time, an approach they called patterned photoactivation nonlinear SIM. “We can do it and we can do it fast,” he said. Indeed, the researchers were able to capture 25 snapshots (to create a single composite image) in about one-third of a second. They used the new technique to watch as proteins broke down and changed shape as well as the dynamics of cell-surface pits called caveolae.

This movie allowed the researchers to measure the effect of the actin cytoskeleton on clathrin-mediated endocytosis.

High NA SIM from HHMI NEWS on Vimeo

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.