Menu

With CRISPR, Scientists Make Neurons From Fibroblasts

Researchers use the CRISPR/Cas system to express three transcription-factor genes, changing the identities of mouse cells.

Aug 15, 2016
Kerry Grens

FLICKR, NICHDBest known as a gene-editing tool, CRISPR has also been rejiggered to serve as a transcriptional manipulator, tuning gene activity. Duke University’s Charles Gersbach and colleagues report in the September issue of Cell Stem Cell that they have used this approach to switch on three transcription factors in mouse embryonic fibroblasts and turn those cells into neurons.

The method offers an alternative to the standard conversion process of bringing in these transcription factors via a viral vector.

“The method that introduces extra genetic copies with the virus produces a lot of the transcription factors, but very little is being made from the native copies of these genes,” study coauthor Joshua Black, a graduate student in Gersbach’s group, said in a press release. “In contrast, the CRISPR approach isn’t making as many transcription factors overall, but they’re all being produced from the normal chromosomal position, which is a powerful difference since they are stably activated. We’re flipping the epigenetic switch to convert cell types rather than driving them to do so synthetically.”

The researchers turned on three genes—Brn2, Ascl1, and Myt1l—by tweaking their epigenetic states. The cells came to resemble neurons, with six out of seven tested producing action potentials when stimulated.

The technique, the authors wrote in their paper, “provides a new strategy for overcoming epigenetic barriers to cell fate specification.”

July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.