Menu

Zinc Fingers Bear Fruit

A method for precise gene editing is able to change disease-causing point mutations in human stem cell DNA.

Jul 18, 2011
Bob Grant

Zinc finger proteins (blue) bound to DNA (orange)THOMAS SPLETTSTOESSER, WIKIMEDIA COMMONS

Researchers have, for the first time, modified a single, disease-causing mutation without altering any other parts of the genome in human stem cells. Scientists in Rudolph Jaenisch’s lab at the Whitehead Institute for Biomedical Research used zinc finger nucleases (ZFNs) to carefully insert or remove a single base pair in the alpha-synuclein gene—which is known to play a role in Parkinson's disease (PD)—in induced pluripotent stem (iPS) cells. Such precise and targeted genetic manipulation could help avoid problems associated with messier methods of gene alteration, such as virus-mediated editing, that complicate the use of stem cells as therapeutic agents. "ZFNs can transfer a mutation without any other alterations to the genome, such as leaving in unwanted pieces of DNA that could be harmful," postdoc Frank Soldner, first author on the paper, published last Thursday in Cell, said in a statement. "This precision is ideal for drug research for PD and other diseases, but it is also one more step toward using ES or iPS cells therapeutically."

Earlier this month, two other postdocs in Jaenisch's lab used transcription activator like effector nucleases (TALENs), which have gene editing powers similar to those of ZFNs, to precisely and efficiently edit genes in both human embryonic stem cells and iPS cells. That work was published in Nature Biotechnology.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening