Menu

Zooming In

To improve the reach of optical microscopy, researchers are enlarging the biological features they wish to view.

Jan 20, 2015
Jef Akst

FLICKR, MILOSZ1By enlarging cells and tissues by up five times their normal size, MIT researchers were able to observe some of the smallest features of life—such as individual neurons and synapses—using traditional optical microscopes, according to a study published last week (January 15) in Science. Edward Boyden, codirector of the MIT Center for Neurobiological Engineering, and his colleagues used the new technique, called expansion microscopy, to view objects as small as 70 nanometers—well below the typical 200-nanometer limit of conventional optical microscopes.

“We hope we have a technology that will allow you to scan the nervous system of entire animals,” Boyden told The New York Times (NYT).

The technique hinges on a polymer that is commonly found in diapers. Absorbing up to 300 times its mass in water, the material has the potential to cause biological entities to swell. By fluorescently tagging the structures of interest, then infusing the tissue with the composite parts of the polymer and adding water, the researchers were able to force the tissue to expand uniformly in all directions—up to five times its original size—while maintaining its overall organization. Boyden hopes that more fine-tuning could eventually result in the ability to expand tissues by 10 times or more, he told NYT.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.