Menu

Gene Drive’s Achilles Heel

Rare genetic variants could blunt efforts to destroy pest populations. 

May 22, 2017
Kerry Grens

WIKIMEDIA, ERIC DAY, VIRGINIA TECH, BLACKSBURG, VAGene drive is a technology that could squelch insect-borne diseases, by forcing deleterious traits engineered into the animals’ DNA to spread throughout populations by selective inheritance. Researchers have shown gene drive is possible in the lab, but there appears to be a catch: reporting in Science Advances last week (May 19), scientists found genetic variations in the sites targeted for CRISPR-based editing can render the intervention useless.

“Although rare, these naturally occurring genetic variants resistant to CRISPR are enough to halt attempts at population control using genetic technology, quickly returning wild populations to their earlier, ‘pre-CRISPR’ numbers,” said coauthor Michael Wade of Indiana University, in a press release.

And these variants aren’t researchers’ only challenge. Wade and his colleagues wrote in their paper that “mild inbreeding, which is a characteristic of many disease-vectoring arthropods,” had the same effect as these alleles that cause resistance to CRISPR.

The researchers set out to test how genetic variation might affect the efficacy of gene drive in the flour beetle, Tribolium castaneum. Using CRISPR, they targeted several genes in the beetle genome with the intent of harming the animal’s fitness. But rather than observing the gene drive spread throughout the population, CRISPR-resistant variants became more frequent and caused the gene drive to disappear.

According to the release, “Wade’s statistical analysis found that a genetic variation rate as low as 1 percent—combined with a rate of inbreeding typical to mosquitos in the wild—was enough to eliminate any CRISPR-based population-control methods in six generations.”

Wade and his colleagues urge gene drive developers to assess genetic variation and mating practices in the wild before using the technology.

See “Using Gene Drives to Limit the Spread of Malaria

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!