Menu

Microscopy Tool Can “See” Through Dense Tissue: Study

Scientists tout this lens-free holographic technique as a cost-effective alternative to standard tissue biopsies. 

Aug 11, 2017
Aggie Mika

Lens-free holographic microscopy (left) and scanning optical microscope (right) of a 200-micron thick mouse brain sampleZHANG ET AL., SCI ADV, 3:E1700553, 2017. A novel imaging technique allows researchers to peer through thick, three-dimensional tissues using a holographic microscope and economical, easily transported tools, according to a study published today (August 11) in Science Advances. The tissue preparation and imaging protocol is meant to serve as an alternative to costlier techniques that aren’t easily accessible in resource-starved areas.

The researchers demonstrated the utility of their technique on a slice of a mouse brain, 200 microns (0.2 millimeters) in thickness. First, they made their tissue sample see-through using a tweaked version of the CLARITY tissue-clearing method, which removes lipids within tissue, then applied a stain to visualize brain cells. The researchers placed their sample near an image-sensing chip, which digitally acquired a focused, 3-D image. Traditional techniques, on the other hand, require lenses and cumbersome optical apparatuses.  

See “Next Generation: See-through Mice

See “Scientists Create See-Through Hearts

They verified their reconstructed images by comparing them to those obtained by a scanning optical microscope. This test confirmed that the lens-free technique can be used to create a more-focused image.

“We believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings,” the authors write.

Diagnosing diseases that leave their mark on the body’s tissues, like cancer, often requires tissue biopsies. But the tools and expertise required to process such tissues can be expensive and is not widely available, especially in developing areas. “The high cost of equipment and the lack of trained health care professionals may result in delays in diagnosis,” the authors write in their report. 

Depiction of the lens-free imaging set up OZCAN RESEARCH GROUP AT UCLA

July 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DeNovoMAX - NRGene's new genomics tool to meet a major agbio need:
DeNovoMAX - NRGene's new genomics tool to meet a major agbio need:
NRGene has launched a new product that aims to empower breeding and maximize agricultural yield as part of the Denovo assembly product suite offered by the company.
Overcoming the Efficiency Challenge in Clinical NGS
Overcoming the Efficiency Challenge in Clinical NGS
Download this white paper to see how an ECS lab serving a network of more than 10,000 healthcare providers integrated QIAGEN Clinical Insight (QCI) Interpret to significantly reduce manual variant curation efforts and increase workflow efficiency by 80%!
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas, Inc., an emerging diagnostic company, launched a portfolio of products that can improve the accuracy of current diagnostic test results by helping laboratory professionals detect and manage biotin interference in patient samples with VeraTest Biotin and VeraPrep Biotin.
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
Scientists presented more than 30 abstracts featuring Bio-Rad’s Droplet Digital PCR (ddPCR) technology at the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, May 31–June 4.