Menu

Microscopy Tool Can “See” Through Dense Tissue: Study

Scientists tout this lens-free holographic technique as a cost-effective alternative to standard tissue biopsies. 

Aug 11, 2017
Aggie Mika

Lens-free holographic microscopy (left) and scanning optical microscope (right) of a 200-micron thick mouse brain sampleZHANG ET AL., SCI ADV, 3:E1700553, 2017. A novel imaging technique allows researchers to peer through thick, three-dimensional tissues using a holographic microscope and economical, easily transported tools, according to a study published today (August 11) in Science Advances. The tissue preparation and imaging protocol is meant to serve as an alternative to costlier techniques that aren’t easily accessible in resource-starved areas.

The researchers demonstrated the utility of their technique on a slice of a mouse brain, 200 microns (0.2 millimeters) in thickness. First, they made their tissue sample see-through using a tweaked version of the CLARITY tissue-clearing method, which removes lipids within tissue, then applied a stain to visualize brain cells. The researchers placed their sample near an image-sensing chip, which digitally acquired a focused, 3-D image. Traditional techniques, on the other hand, require lenses and cumbersome optical apparatuses.  

See “Next Generation: See-through Mice

See “Scientists Create See-Through Hearts

They verified their reconstructed images by comparing them to those obtained by a scanning optical microscope. This test confirmed that the lens-free technique can be used to create a more-focused image.

“We believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings,” the authors write.

Diagnosing diseases that leave their mark on the body’s tissues, like cancer, often requires tissue biopsies. But the tools and expertise required to process such tissues can be expensive and is not widely available, especially in developing areas. “The high cost of equipment and the lack of trained health care professionals may result in delays in diagnosis,” the authors write in their report. 

Depiction of the lens-free imaging set up OZCAN RESEARCH GROUP AT UCLA

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.