Menu

New Gene Therapy Shrinks Aggressive Tumors in Mice

Scientists shut down cancer-causing fusion genes with CRISPR.

May 2, 2017
Aggie Mika

 

 

WIKIMEDIA, APERS0N         

                 

A CRISPR-based gene therapy that targets cancerous fusion genes—hybrid genes that are formed when two previously distinct genes join together—shrinks aggressive forms of liver and prostate cancers in mice.

The approach could be developed to address the problem of drug resistance. Cancer cells are prone to evolving new mutations when treated with traditional chemotherapy; using genome editing, the new mutations could be targeted to continue fighting the disease, Jian-Hua Luo, the lead author and a professor of pathology at the University of Pittsburgh School of Medicine, said in a press release.

In the study, published Monday (May 1) in Nature Biotechnology,  Luo and colleagues set their sights on two fusions genes they had previously found to be associated with prostate cancer and various forms of rapid and invasive cancer, including liver tumors. Using a modified CRISPR-Cas9 tool that creates a single- rather than double-stranded break in DNA, they targeted the chromosomal breakpoints that form these fusion genes and replaced fusion DNA with a gene encoding the enzyme HSV1-tk.

This enzyme effectively kills tumor cells by converting the drug ganciclovir into its active form, which then blocks DNA synthesis and leads to cell death. (Ganciclovir is used to treat cytomegalovirus in humans.)

The researchers found that HSV1-tk insertion followed by ganciclovir treatment killed tumors in dishes and shrank them in mice. In mice transplanted with human prostate and liver cancers, this gene therapy also stopped tumors from spreading, and allowed all 17 mice to survive the eight-week study. On the other hand, tumors continued to grow and spread in control mice, and all died before the study ended.

“This is the first time that gene editing has been used to specifically target cancer fusion genes,” said Luo in the statement. “It is really exciting because it lays the groundwork for what could become a totally new approach to treating cancer.” 

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

pIC50: The Advantages of Thinking Logarithmically
pIC50: The Advantages of Thinking Logarithmically
Watch this webinar from Collaborative Drug Discovery to learn about how using pIC50 helps you get a better sense of the relative potencies, calculate the correct mean of multiple values, and select better sampling doses.
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!