Menu

Organic Fertilizers Rife With Microplastics: Study

Converting biowaste to plant food is an overlooked source of tiny plastic pollutants, researchers say.

Apr 4, 2018
Shawna Williams

ISTOCK, MAERZKINDThe recycling of biological waste from homes and businesses to make fertilizer, either through composting or fertilization, is a source of microplastic pollution, according to a study published today (April 4) in Science Advances. The particles were present despite efforts to sort and sieve out plastic contaminants either before or after the waste was processed, the authors note.

“The recycling of organic waste through composting or fermentation and subsequent application on agricultural land is, in principle, an environmentally sound practice to return nutrients, trace elements, and humus to the soil,” the study authors write. “However, most household and municipal biowaste is contaminated by plastic material.”

See “Plastic Pollutants Pervade Water and Land

Microplastics, which the new study defines as plastic particles smaller than 5 mm, result from the breakdown of plastics, and are pervasive both on land and in the oceans. While the extent of their environmental and health effects is not clear, studies have found they’re detrimental to the health of organisms such as earthworms and rodents, and that they make their way into human food supplies.

In the new study, researchers at the University of Bayreuth in Germany investigated fertilizer produced by a biowaste composting plant (which treats waste aerobically) and a biowaste digester (which uses an anaerobic process). There were fewer than 25 microplastic particles per kilogram in the compost from the first plant, while the freshly-digested fertilizer from the second plant had up to 146 particles per kilogram of the pollutants. By contrast, no microplastics were found in digestate from an agricultural energy crop digester, suggesting that the contamination in the products from the first two plants originated in the homes and businesses that were the source of the waste used.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening